Unimolecular Decomposition of Nitrosobenzene
J. Phys. Chem. A, Vol. 101, No. 34, 1997 6047
(2) Lin, C.-Y.; Sanders, W. A.; Umstead, M. E.; Lin, M. C. Poster
paper, 21st Symp. (Int.) Combust., Munich, Germany, 1986.
(3) Braun-Unkoff, M.; Frank, P.; Just, Th. 22nd Symp. (Int.) Combust.,
[Proc.] 1988, p 1053.
(4) Yu, T.; Lin, M. C. J. Am. Chem. Soc. 1993, 115, 4371.
(5) Lin, M. C.; Yu, T. Int. J. Chem. Kinet. 1993, 25, 875.
(6) Yu, T.; Lin, M. C. J. Phys. Chem. 1994, 98, 2105.
(7) Yu, T.; Lin, M. C. Int. J. Chem. Kinet. 1994, 26, 771.
(8) Yu, T.; Lin, M. C.; Melius, C. F. Int. J. Chem. Kinet. 1994, 26,
1095.
(9) Yu, T.; Lin, M. C. J. Am. Chem. Soc. 1994, 116, 9571.
(10) Yu, T.; Lin, M. C. J. Phys. Chem. 1995, 99, 8599.
(11) Choo, K.-L.; Golden, D. M.; Benson, S. W. Int. J. Chem. Kinet.
1975, 7, 713.
(12) McMillen, D. F.; Golden, D. M. Annu. ReV. Phys. Chem. 1982,
33, 439.
(13) Horn, C.; Frank, P.; Trauter, R. S.; Schaug, J.; Grotheer, H.-H.;
Just, Th. 26th Symp. (Int.) Combust., [Proc.], in press
(14) Mebel, A. M.; Morokuma, K.; Lin, M. C. J. Chem. Phys. 1995,
103, 7414.
Figure 5. Effect of pressure on the first-order rate coefficient, k1, at
the two temperatures indicated.
(15) He, Y.; Kolby, E.; Shumaker, P.; Lin, M. C. Int. J. Chem. Kinet.
1989, 21, 1015.
(16) Aldridge, K. H.; Liu, X; Lin, M. C.; Melius, C. F. Int. J. Chem.
Kinet. 1991, 23, 947.
(17) Diau, E. W. G.; Halbgewachs, M. J.; Smith, A. R.; Lin, M. C. Int.
J. Chem. Kinet. 1995, 27, 855.
(18) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) Ibid. 1992,
96, 2155; (c) Ibid. 1992, 97, 9173.
(19) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
(20) Hehre, W.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio
Molecular Orbital Theory; Wiley: New York, 1986.
(21) (a) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. (b)
Hampel, C.; Peterson, K. A.; Werner, H.-J. Chem. Phys. Lett. 1992, 190,
1. (c) Knowles, P. J.; Hampel, C.; Werner, H.-J. J. Chem. Phys. 1994, 99,
5219. (d) Deegan, M. J. O.; Knowles, P. J. Chem. Phys. Lett. 1994, 227,
321.
TABLE 5: Calculated Values of ∆H° by the Third-Law
0
with the Calculated Gibbs Energy Function
b
temp (K)
k-1 (cm3/mol s)a
k1 (s-1
)
∆H°(kcal/mol)
0
298
323
350
388
388
388
423
463
1.13 × 1013
1.11 × 1013
9.40 × 1012
8.37 × 1012
1.02 × 1013
1.11 × 1013
6.38 × 1012
9.13 × 1012
8.19 × 1012
5.89 × 10-24
7.87 × 10-21
5.89 × 10-18
1.37 × 10-14
1.37 × 10-14
1.37 × 10-14
5.05 × 10-12
1.45 × 10-9
1.21 × 10-7
54.40
54.38
54.24
54.10
54.25
54.32
53.81
54.04
500
average value
53.86
54.16 ( 0.22
a Data of Yu and Lin, ref 6. b Calculated by eq II.
(22) Liu, R.; Morokuma, K.; Mebel, A. M.; Lin, M. C. J. Phys. Chem.
1996, 100, 9314.
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.
A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 94, Revision B.2;
Gaussian, Inc.: Pittsburgh, PA, 1995.
(24) MOLPRO is a package of ab initio programs written by H.-J.
Werner and P. J. Knowles, with contributions from J. Almlo¨f, R. D. Amos,
M. J. O. Deegan, S. T. Elbert, C. Hampel, W. Meyer, K. Peterson, R. Pitzer,
A. J. Stone, P. R. Taylor and R. Lindh.
(25) Mebel, A. M.; Lin, M. C.; Yu, T.; Morokuma, K. J. Phys. Chem.,
in press.
(26) CRC Handbook of Chemistry and Physics, 74th ed.; Lide, D. R.,
Ed.; Chemical Rubber: Boca Raton, FL, 1993.
(27) Dixon, R. N. J. Chem. Phys. 1996, 104, 6905. The value given at
0 K, 26.29 ( 0.06 kcal/mol, was corrected for the thermal effect. The 298
K value, 25.5 kcal/mol, is very close to 25.4 + 0.6/-0.1 kcal/mol,
recommended by W. R. Anderson (CPIA Pub. No. 606, Vol. II, p 205,
1993).
(28) Chase, M. W., Jr.; Davles, C. A.; Downey, J. R., Jr.; Frurip, D. J.;
McDonald, R. A.; Syverud, A. N. JANAF Thermochemical Tables. J. Phys.
Chem. Ref. Data 1985, 14, Suppl. 1.
+ NO (1), k∞1 ) (1.42 ( 0.13) × 1017 exp[-(55 060 ( 1080)/
RT] s-1. The combination of this new result with that reported
earlier by Yu and Lin for the reverse process (-1) obtained by
the cavity ring-down technique yielded with the third-law
method the C-N bond dissociation energy D°0 (C6H5-NO) )
54.2 ( 0.5 kcal/mol. This result, after thermal correction to
298 K, is 4 kcal/mol higher than the accepted value, 51 ( 1
kcal/mol.12 Our higher value is fully consistent with the result
of high-level ab inito MO calculations, 53.8-55.4 kcal/mol,
based on a modified Gaussian-2 method.14 Furthermore, our
high-pressure rate constant k∞1 was found to be in good
agreement with the results of k1 and k-1, reported by Horn and
co-workers,13 after appropriate corrections were made for the
pressure falloff effect.
Acknowledgment. We acknowledge the support received
from the Department of Energy, Office of Basic Energy
Sciences, Division of Chemical Sciences, through Contract DE-
FGO5-91ER14191. The authors are thankful to the Cherry L.
Emerson Center for Scientific Computation for the use of
various programs and computing facilities. Helpful discussion
with Dr. C. F. Melius is much appreciated.
(29) Davico, G. E.; Bierbaum, V. M.; Depuy, C. H.; Ellison, G. B.;
Squires, R. R. J. Am. Chem. Soc. 1995, 117, 2590.
(30) Melius, C. F. BAC-MP4 Heats of Formation and Free Energies,
April 25, 2993 (private communication).
(31) Park, J.; Lin, M. C. J. Phys. Chem. 1997, 101A, 14.
(32) Frost, W. J. Phys. Chem. 1972, 76, 342
References and Notes
(1) Lin, C.-Y. Ph.D. Dissertation, The Catholic University of America,
Washington, DC, 1987.
(33) Pitzer, K. S. Thermodynamics, 3rd ed.; 1995; McGrawHill: New
York, p 114.