the yield was unacceptably low (3 d, 34% yield). Therefore,
we decided to search for efficient conditions for this
challenging reaction. Since an amine-catalyzed aldol reaction
proceeds via an enamine intermediate 2, acceleration of the
formation of 2 may be a key to enhancing the construction
of the R,R-dialkylaldol product 3. Recently, we have
developed a fluorescent detection system to monitor the
progress of C-C bond formation using the fluorogenic
5
maleimide 4. The acetone enamine generated in situ reacts
with 4 to give 6, which exhibits a high fluorescence
compared to that of 4. Thus, this assay system should be
useful in ranking catalysts of enamine formation. Catalysts
that efficiently form an enamine with acetone should also
be efficient in forming enamines with other carbonyl
compound, in particular aldehydes. Since it is well-known
that pyrrolidine can be used in enamine synthesis and that
6
this process is catalyzed by acids, we have screened
pyrrolidine-acid combinations. The screening was initially
performed by using various acid additives, such as Lewis,
Brønsted, and organic acids on the reaction of 4 with 5 in
the presence of pyrrolidine. Reactions were performed with
pyrrolidine (3 mM), acid (3 mM), and 4 (6 µM) in 20%
acetone/80% DMSO, and the initial reaction velocities were
determined by monitoring the fluorescence (λex 315 nm, λem
Figure 1. Initial velocities of reactions of pyrrolidine-acid
combinations using fluorogenic substrate 4. Conditions: see text.
RFU ) Relative fluorescence unit. Acid additives: 1, none; 2,
365 nm) over 20 min. Results are shown in Figure 1. Eight
Sc(OTf)
Eu(OTf)
D-(+)-10-camphorsulfonic acid; 13, HNO
CH CO H; 16, Ph(CH CO H; 17, CH (CH
9, linoleic acid; 20, 4-CH CO H.
3
; 3, Cu(OTf)
2
; 4, Zn(OTf)
2
; 5, Y(OTf)
SO H; 11, p-TsOH; 12,
; 14, CF CO H; 15,
CO H; 18, oleic acid;
3 3
; 6, La(OTf) ; 7,
acids, including Zn(OTf) , Y(OTf) , and carboxylic acids,
3
3
3
; 8, Yb(OTf)
3
; 9, H SO ; 10, CF
2
4
3
3
increased the fluorescence intensity compared to the reaction
without acid. Acetic acid provided a 2.2-fold greater initial
velocity compared to the same reaction without acid, while
3
3
2
3
2
2
)
2
2
3
2
)
8
2
1
3
C
H
6 4
2
strong acids, such as H
SO
2 4
3 3
, CF SO H, p-TsOH, D-(+)-10-
3
camphorsulfonic acid, and HNO , showed slower velocities.
These pyrrolidine-acid combinations were also screened in
the same way but using a series of different solvents, such
as DMSO, DMF, 1,4-dioxane, acetone, MeCN, THF, PhMe,
i-PrOH, and MeOH. This study revealed DMSO to be the
most effective solvent. We also evaluated different molar
ratios of pyrrolidine to acetic acid and found that 1 or more
equiv of acetic acid was more efficient than combinations
involving less than 1 equiv of acetic acid.
(
3) Selected aldol studies: (a) List, B.; Lerner, R. A.; Barbas, C. F., III.
J. Am. Chem. Soc. 2000, 122, 2395-2396. (b) Sakthivel, K.; Notz, W.;
Bui, T.; Barbas, C. F., III. J. Am. Chem. Soc. 2001, 123, 5260-5267. (c)
Nakadai, M.; Saito, S.; Yamamoto, H. Tetrahedron 2002, 58, 8167-8177.
(
3
d) Cordova, A.; Notz, W.; Barbas, C. F., III. J. Org. Chem. 2002, 67,
01-303. (e) Kotrusz, P.; Kmentova, I.; Gotov, B.; Toma, S.; Solcaniova,
E. Chem. Commun. 2002, 2510-2511. (f) Chowdari, N. S.; Ramachary,
D. B.; Cordova, A.; Barbas, C. F., III. Tetrahedron Lett. 2002, 43, 9591-
9
6
2
595. (g) Anders, B.; Nagaswamy, K.; Anker, J. K. Chem. Commun. 2002,
20-621. (h) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc.
002, 124, 6798-6799. (i) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong,
To determine the utility of these reaction conditions to
intermolecular aldol reactions involving R,R-dialkylaldehyde
donors, the syntheses of a variety of quaternary carbon
L.-Z.; Qiao, A.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125,
5
1
262-5263. (j) Darbre, T.; Machuqueiro, M. Chem. Commun. 2003, 1090-
091.
(4) Recent studies in organocatalysis: (a) Pidathala, C.; Hoang, L.;
7,8
Vignola, N.; List, B. Angew. Chem., Int. Ed. 2003, 42, 2785-2788. (b)
containing aldols were evaluated (Table 1). Without acetic
acid, the reaction of isobutyraldehyde (7a) and p-nitro-
benzaldehyde (8a) provided aldol product 9a in 74% yield
after 2 days (entry 1). In contrast, addition of 1 equiv of
acetic acid to pyrrolidine improved the yield to 89% after
only 4 h (entry 2). With 5 equiv of acetic acid with respect
to pyrrolidine, 9a was obtained in 95% yield after only 15
Juhl, K.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 1498-1501.
(
c) Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai,
K. Angew. Chem., Int. Ed. 2003, 42, 3677-3680. (d) Halland, N.; Aburel,
P. S.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 661-665. (e)
Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. J. Am. Chem. Soc. 2003,
1
25, 16-17. (f) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am.
Chem. Soc. 2003, 125, 2475-2479. (g) Melchiorre, P.; Jorgensen, K. A. J.
Org. Chem. 2003, 68, 4151-4157. (h) Chowdari, N. S.; Ramachary, D.
B.; Barbas, C. F., III. Org. Lett. 2003, 5, 1685-1688. (i) Bahmanyar, S.;
Houk, K. N. Org. Lett. 2003, 5, 1249-1251. (j) Cordova, A.; Barbas, C.
F., III. Tetrahedron Lett. 2003, 44, 1923-1926. (k) Liu, H.; Peng, L.; Zhang,
T.; Li, Y. New J. Chem. 2003, 27, 1159-1160. (l) Zhong, G. Angew. Chem.,
Int. Ed. 2003, 42, 4247-4250. (m) Ramachary, D. B.; Chowdari, N. S.;
Barbas, C. F., III. Angew. Chem., Int. Ed. 2003, 42, 4233-4237. (n) Hayashi,
Y.; Tsuboi, W.; Shoji, M.; Suzuki, N. J. Am. Chem. Soc. 2003, 125, 11208-
(7) Pyrrolidine-AcOH has been studied in intramolecular aldol reactions;
see ref 6b-d. See also: (a) Desmaele, D.; d’Angelo, J. Tetrahedron Lett.
1989, 30, 345-348. (b) Snider, B. B.; Yang, K. J. Org. Chem. 1990, 55,
4392-4399. (c) Barros, M. T.; Santos, A. G.; Godinho, L. S.; Maycock,
C. D. Tetrahedron Lett. 1994, 35, 3999-4002. (d) Greco, M. N.; Maryanoff,
B. E. Tetrahedron Lett. 1992, 33, 5009-5012.
(8) The fluorescent screening results were roughly correlated to the aldol
reaction results. For example, compared to pyrrolidine-acetic acid (V )
138.8 RFU/s in Figure 1), the pyrrolidine-D-(+)-10-camphorsulfonic acid
combination (V ) 13.5) did not catalyze the aldol reaction after 24 h.
Pyrrolidine-Yb(OTf)3 (V ) 46.2) and pyrrolidine-p-toluic acid (V ) 131.8)
gave the aldol product in 82% (15 h) and 91% (5 h) yield, respectively.
1
1209.
(5) Tanaka, F.; Thayumanavan, R.; Barbas, C. F., III. J. Am. Chem. Soc.
2
003, 125, 8523-8528.
(
Spencer, T. A.; Neel, H. S.; Ward, D. C.; Williamson, K. L. J. Org. Chem.
966, 31, 434-436. (c) Woodward, R. B. Pure Appl. Chem. 1968, 17, 519-
47. (d) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1612-1615.
6) (a) Kuehne, M. E. J. Am. Chem. Soc. 1959, 81, 5400-5404. (b)
1
5
4370
Org. Lett., Vol. 5, No. 23, 2003