D
Synlett
H. R. Aitken et al.
Letter
represents a significant increase in substrate scope for that
methodology.
sample gave the following data. IR (film): 2972, 1716, 1452,
–1 1
1
7
316, 1274, 1113, 1026, 712 cm . H NMR (400 MHz, CDCl ):
= 9.20 (s, 1 H), 7.91–7.86 (m, 2 H), 7.59–7.52 (m, 1 H), 7.47–
3
.40 (m, 2 H), 4.36 (t, J = 6.1 Hz, 2 H), 2.31 (t, J = 6.1 Hz, 2 H),
13
Funding Information
1.35 (s, 6 H). C NMR (100 MHz, CDCl
33.3, 129.7, 129.6, 128.6, 61.5, 44.3, 37.8, 24.0. HRMS (ESI):
3
): = 202.3, 188.7, 166.4,
1
+
The University of Auckland provided a Doctoral Scholarship to HA.
This work was also supported by the Royal Society of New Zealand
m/z [M + Na] calcd for C14H16NaO : 271.0941; found: 271.0935.
4
(16) Wu, F.; Mandadapu, V.; Day, A. I. Tetrahedron 2013, 69, 9957.
(17) Kornblum, N.; Frazier, H. W. J. Am. Chem. Soc. 1966, 88, 865.
(Marsden Found, Grant No. UOA1422).
R
o
y
a
lS
o
c
i
ety of
N
e
w
Z
e
a
l
a
n
d
(1
4
2
2)U
n
i
v
ersity of
A
u
c
k
l
a
n
d
()
(18) Mitschka, R.; Oehldrich, J.; Takahashi, K.; Cook, J. M.; Weiss, U.;
Silverton, J. V. Tetrahedron 1981, 37, 4521.
(19) Kotha, S. S.; Sekar, G. Tetrahedron Lett. 2015, 56, 6323.
Supporting Information
(
20) Zhu, Y.-P.; Jia, F.-C.; Liu, M.-C.; Wu, A.-X. Org. Lett. 2012, 14,
414.
Supporting information for this article is available online at
https://doi.org/10.1055/s-0037-1610748.
4
S
u
p
p
orit
n
g Inform ati
o
n
S
u
p
p
orti
n
g Inform ati
o
n
(
21) To a solution of ketone 5 (40 mg, 0.142 mmol) in dichlorometh-
ane (1 mL) at –10 °C triethylamine (97 L, 0.71 mmol) was
added, followed by tert-butyldimethylsilyl trifluoromethanesul-
fonate (65 L, 0.28 mmol). After 1 h the reaction was quenched
with saturated aqueous sodium hydrogen carbonate (2 mL) and
extracted with dichloromethane (3 × 3 mL). The combined
organic layers were dried over sodium sulfate, filtered, concen-
trated, then dissolved in petroleum ether (10 mL), filtered
through a plug of cotton wool and concentrated again, to give
the crude silyl enol ether. To a solution of diamine-N-dioxide
References and Notes
(1) Selwood, A. I.; Wilkins, A. L.; Munday, R.; Shi, F.; Rhodes, L. L.;
Holland, P. T. Tetrahedron Lett. 2013, 54, 4705.
(2) Duh, C.-Y.; Wang, S.-K.; Chia, M.-C.; Chiang, M. Y. Tetrahedron
Lett. 1999, 40, 6033.
(3) Meyer, C. E. J. Antibiot. 1971, 24, 3.
(
4) Some methods for asymmetric synthesis of simple derivatives
have been reported: (a) Moles, F. J. N.; Guillena, G.; Nájera, C.
Synlett 2015, 26, 656. (b) Alberg, D. G.; Poulsen, T. B.; Bertelsen,
S.; Christensen, K. L.; Birkler, R. D.; Johannsen, M.; Jørgensen, K.
A. Bioorg. Med. Chem. Lett. 2009, 19, 3888. (c) Guo, L.; Plietker, B.
Angew. Chem. Int. Ed. 2019, 58, 8346. (d) Richter, C.; Krumey, M.;
Klaue, K.; Mahrwald, R. Eur. J. Org. Chem. 2016, 5309.
5) Zhao, J.; Zheng, K.; Yang, Y.; Shi, J.; Lin, L.; Liu, X.; Feng, X. Synlett
(8.7 mg, 0.015 mmol) in dichloromethane (1 mL) at 30 °C, nickel
tetrafluoroborate hexahydrate (4.8 mg, 0.014 mmol) was added,
the mixture was stirred vigorously for 30 min, and then concen-
trated and dried in vacuo for 5 h. A solution of freshly prepared
crude glyoxal (6, ca. 0.142 mmol) and the previously prepared
silyl enol ether in dichloromethane (1 mL) was then added, and
the mixture warmed to 30 °C. After 2 h, further glyoxal 6 (ca.
(
0
.142 mmol) in dichloromethane (0.5 mL) was added dropwise,
followed after a further 2 h by another solution of glyoxal 6 (ca.
.142 mmol) in dichloromethane (0.5 mL). The reaction was
2011, 903.
(
(
6) Wang, J.; Su, Z.; Yang, N.; Hu, C. J. Org. Chem. 2016, 81, 6444.
7) Wanner, M. J.; Boots, R. N. A.; Eradus, B.; Gelder, R. D.; van Maar-
seveen, J. H.; Hiemstra, H. Org. Lett. 2009, 11, 2579.
0
then stirred for 18 h and quenched with aqueous citric acid (0.5
M, 3 mL), stirred for 30 min, and then extracted with dichloro-
methane (3 × 3 mL). The combined organic layers were washed
with brine (6 mL), dried over sodium sulfate, filtered, and con-
centrated. The resultant oil was allowed to stand in chloroform
for 14 h, then concentrated in vacuo. Chromatography (petro-
leum ether/ethyl acetate, 15:1) afforded (7, 24 mg, 32%) as a col-
orless oil and returned starting material ketone (5, 22 mg, 55%);
(8) Suen, L. M.; Steigerwald, M. L.; Leighton, J. L. Chem. Sci. 2013, 4,
2
413.
9) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996,
21.
(
5
(10) Ohira, S. Synth. Commun. 1989, 19, 561.
(11) Jägel, J.; Schmauder, A.; Binanzer, M.; Maier, M. E. Tetrahedron
2
007, 63, 13006.
12) Wilson, Z. E.; Hubert, J. G.; Brimble, M. A. Eur. J. Org. Chem. 2011,
938.
13) Schuda, P. F.; Cichowicz, M. B.; Heimann, M. R. Tetrahedron Lett.
983, 24, 2.
14) Ihmels, H.; Maggini, M.; Prato, M.; Scorrano, G. Tetrahedron Lett.
991, 32, 6215.
2
0
[
]D 2.2 (c 2.4, CHCl ). IR (film): 3480, 2958, 2857, 1716, 1275,
3
(
(
(
(
–1 1
1
8
4
3
113, 1027, 837, 776, 713 cm . H NMR (400 MHz, CDCl ): =
3
3
.01–7.97 (m, 2 H), 7.59–7.53 (m, 1 H), 7.46–7.40 (m, 2 H),
.90–4.83 (m, 1 H), 4.39–4.27 (m, 2 H), 3.71–3.67 (m, 1 H),
.60–3.56 (m, 1 H), 2.65–2.57 (m, 2 H), 2.58–2.36 (m, 2 H), 2.28
1
(ddd, J = 16.6, 5.8, 2.6 Hz, 1 H), 2.23–1.98 (m, 3 H), 1.95 (dd, J =
1
3.0, 2.6 Hz, 1 H), 1.80–1.62 (m, 3 H), 1.33 (s, 3 H), 1.33 (s, 3 H),
15) Preparation of Glyoxal (6)
13
0.96 (d, J = 6.9 Hz, 3 H), 0.88 (s, 9 H), 0.06 (s, 6 H). C NMR (100
To stirred diazoketone 22 (104 mg, 0.400 mmol), dimethyldiox-
irane (69 mM in acetone, 6.7 mL, 0.466 mmol) was added rap-
idly. The mixture was vigorously stirred for 2 min, then concen-
trated under a stream of nitrogen. The resultant crude oil was
used in the next step without further purification. An analytical
MHz, CDCl ): = 214.4, 209.4, 166.7, 133.2, 130.3, 129.7, 128.5,
3
83.9, 73.4, 70.6, 69.2, 61.9, 46.0, 45.8, 40.2, 38.3, 37.9, 26.9, 26.0,
+
25.4, 24.6, 21.9, 18.2, 14.4, –4.1, –4.4. HRMS (ESI): m/z [M + H]
calcd for C30H46NaO Si: 553.2956; found: 553.2957.
6
©
2020. Thieme. All rights reserved. Synlett 2020, 31, A–D