pubs.acs.org/joc
Thus, we have extensively used formamides derived from
N-methylvaline and other N-methylamino acids as a scaffold
in designing novel organocatalysts for asymmetric reduction
8
of imines with trichlorosilane.
On the Selective N-Methylation of BOC-Protected
Amino Acids
,
†,§
†
Andrei V. Malkov,* Kvetoslava Vrankov ꢀa ,
‡
,†
ꢁ
Miloslav Cern ꢀy , and Pavel Ko ꢁc ovsk ꢀy *
SCHEME 1. N-Methylation of Carbamate Derivatives of
Valine
†
Department of Chemistry, WestChem, University of
‡
Glasgow, Glasgow G12 8QQ, U.K., and Department of
Organic Chemistry, Charles University, 128 40, Prague 2,
Czech Republic. Present address: Department of Chemistry,
§
Loughborough University, Loughborough LE11 3TU, UK.
a.malkov@lboro.ac.uk; pavelk@chem.gla.ac.uk
Received February 24, 2009
Selective N-alkylation of amino acids is a challenging
problem that generally requires selective protection and the
use of procedures that minimize racemization. From a
number of existing methods, the N-methylation of carba-
mate derivatives of amino acids, such as N-BOC or N-Cbz
(
most simple (Scheme 1). This methodology was first deve-
1a,b), with CH I and NaH, stands as one that is potentially
3
3
loped by Benoiton and later further improved or modi-
2
,4,5
fied.
Other approaches, relying, e.g., on double-reductive
amination of the free amino group (first with PhCHO and
The selective N-methylation of BOC-protected valine 1a
with MeI and NaH in THF (i.e., in the presence of a free
carboxyl group) has been attributed to the protection of
then with CH O), have been developed for polyfunctional
2
amino acids, such as histidine, where N-methylation of the
9
+
the carboxylate by chelation to Na . An alternative
imidazole moiety must be avoided.
The original Benoiton protocol, employing CH I and
3
a
mechanism, involving the formation of the carbene inter-
mediate generated from MeI and its insertion into the
N-H bond, has been ruled out by isotopic labeling.
3
NaH, followed the traditional wisdom, i.e., initial double
deprotonation of 1 by g2 equiv of NaH to generate the
corresponding dianion, followed by treatment with MeI,
which provided the product of N,O-bismethylation. Sub-
sequent hydrolysis of the ester group, which may be accom-
panied by a certain degree of racemization, then gave the free
acid 2. In fact, the double methylation required elevated
temperature and/or addition of DMF to improve the solu-
N-Methylamino acids are valuable building blocks in
medicinal chemistry and as substitutes for “natural” amino
1-5
acids.
Their popularity stems, in particular, from various
3
a
effects they introduce to peptides, such as the restriction of
conformational mobility, conformational change, and an
bility of the dianion. A modification of this protocol in the
way that 1a was first mixed with MeI prior to the addition of
NaH resulted in a dramatic change: thus, at room tempera-
ture, with just THF as a solvent, Benoiton was able to obtain
the enantiopure N-methylated product 2a in an excellent
yield, with only trace amounts of the unreacted starting
1
-5
increased stability to proteolytic enzymes.
amino acids have also been frequently employed in the con-
The N-methyl-
6
struction of various catalysts and ligands for transition metals.
7
3
c
(
1) (a) Fairlie, D. P.; Abbenante, G.; March, D. R. Curr. Med. Chem.
995, 2, 654. (b) Deska, J.; Kazmaier, U. Curr. Org. Chem. 2008, 12, 355.
2) (a) Aurelio, R.; Brownlee, R. T. C.; Hughes, A. B. Chem. Rev. 2004,
04, 5823. (b) Perdih, A.; Dolenc, M. S. Curr. Org. Chem. 2007, 11, 801.
3) (a) Coggins, J. R.; Benoiton, N. L. Can. J. Chem. 1971, 49, 1968. (b)
material and the bismethylated product.
1
(
1
(8) (a) Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Ko ꢁc ovsk ꢀy , P.
Org. Lett. 2004, 6, 2253. (b) Malkov, A. V.; Ston ꢁc ius, S.; MacDougall, K. N.;
Mariani, A.; McGeoch, G. D.; Ko ꢁc ovsk ꢀy , P. Tetrahedron 2006, 62, 264. (c)
Malkov, A. V.; Figlus, M.; Ston ꢁc ius, S.; Ko ꢁc ovsk ꢀy , P. J. Org. Chem. 2007, 72,
1315. (d) Malkov, A. V.; Ston ꢁc ius, S.; Ko ꢁc ovsk ꢀy , P. Angew. Chem., Int. Ed.
2007, 46, 3722. (e) Malkov, A. V.; Figlus, M.; Ko ꢁc ovsk ꢀy , P. J. Org. Chem.
2008, 73, 3985. (f) Malkov, A. V.; Ston ꢁc ius, S.; Vrankov ꢀa , K.; Arndt, M.;
Ko ꢁc ovsk ꢀy , P. Chem.;Eur. J. 2008, 14, 8082. (g) Malkov, A. V.; Vrankov ꢀa ,
K.; Ston ꢁc ius, S.; Ko ꢁc ovsk ꢀy , P. J. Org. Chem. 2009, 74, 5839. (h) Malkov, A. V.;
Figlus, M.; Prestly, M. R.; Rabani, G.; Cooke, G.; Ko ꢁc ovsk yꢀ , P. Chem.;Eur. J.
2009, 15, 9651. (i) Malkov, A. V.; Figlus, M.; Cooke, G.; Caldwell, S. T.; Rabani,
G.; Prestly, M. R.; Ko ꢁc ovsk yꢀ , P. Org. Biomol. Chem. 2009, 1878. (j) Malkov,
A. V.; Vrankov ꢀa , K.; Sigerson, R.; Ston ꢁc ius, S.; Ko ꢁc ovsk ꢀy , P. Tetrahedron 2009,
65, 9481. (k) Figlus, M.; Caldwell, S. T.; Walas, D.; Sanyal, A.; Yesilbag, G.;
Cooke, G.; Ko ꢁc ovsk ꢀy , P.; Malkov, A. V. Org. Biol. Chem. 2009, in press
(manuscript no. B916601G).
(
McDeromott, J. R.; Benoiton, N. L. Can. J. Chem. 1973, 51, 1915. (c)
Cheung, S. T.; Benoiton, N. L. Can. J. Chem. 1977, 55, 906. (d) Cheung, S. T.;
Benoiton, N. L. Can. J. Chem. 1977, 55, 911. (e) Cheung, S. T.; Benoiton,
N. L. Can. J. Chem. 1977, 55, 916.
(4) (a) Pitzele, B. S.; Hamilton, R. W.; Kudla, K. D.; Tsymbalov, S.;
Stapelfeld, A.; Savage, M. A.; Clare, M.; Hammond, D. L.; Hansen, D. W.
J. Med. Chem. 1994, 37, 888. (b) Andrus, M. B.; Li, W.; Keyes, R. F. J. Org.
Chem. 1997, 62, 5542.
(5) (a) Stodulski, M.; Mlynarski, J. Tetrahedron: Asymmetry 2008, 19, 970.
See also: (b) Macleod, C.; McKiernan, G. J.; Guthrie, E. J.; Farrugia, L. J.;
Hamprecht, D. W.; Macritchie, J.; Hartley, R. C. J. Org. Chem. 2003, 68, 387.
(
6) Ko ꢁc ovsk ꢀy , P.; Malkov, A. V. Chiral Lewis Bases as Catalysts. In
Enantioselective Organocatalysis; Dalko, P. I., Ed.; Wiley-VCH: Weinheim,
007; p 255.
7) Malkov, A. V.; Hand, J. B.; Ko ꢁc ovsk ꢀy , P. Chem. Commun. 2003, 1948.
2
(
(9) White, K. N.; Konopelski, J. P. Org. Lett. 2005, 7, 4111.
DOI: 10.1021/jo9016293
r 2009 American Chemical Society
Published on Web 10/07/2009
J. Org. Chem. 2009, 74, 8425–8427 8425