Formation of Trimethylene Carbonate: Carbon Dioxide Utilization
[
4] a) M. North, B. Wang, C. Young, Energy Environ. Sci. 2011,
Conclusions
4
, 4163; b) M. North, C. Young, Catal. Sci. Technol. 2011, 1,
93; c) W. Clegg, R. W. Harrington, M. North, P. Villuendas, J.
We have developed, to the best of our knowledge, the
first selective procedure for the formation of the TMC
monomer 1 at atmospheric pressure carbon dioxide from
Org. Chem. 2010, 75, 6201; d) W. Clegg, R. W. Harrington, M.
North, R. Pasquale, Chem. Eur. J. 2010, 16, 6828; e) I. S. Met-
calfe, M. North, R. Pasquale, A. Thursfield, Energy Environ.
Sci. 2010, 3, 212; f) M. North, P. Villuendas, C. Young, Chem.
Eur. J. 2009, 15, 11454; g) M. North, R. Pasquale, Angew.
Chem. Int. Ed. 2009, 48, 2946; Angew. Chem. 2009, 121, 2990;
h) J. Meléndez, M. North, P. Villuendas, Chem. Commun. 2009,
[
23]
oxetane.
This process is one of only a handful of
approaches that allow the conversion of oxetane to the
cyclic carbonate rather than the thermodynamically more
stable polymer 2. The yields obtained are comparable or
better than those already reported in the area. The equip-
2577; i) J. Meléndez, M. North, R. Pasquale, Eur. J. Inorg.
Chem. 2007, 3323.
ment required to perform this CO incorporation reaction [5] D. J. Darensbourg, Inorg. Chem. 2010, 49, 10765.
2
is cheap and should be readily available in any undergradu- [6] J. Yoo, S. J. Na, H. C. Park, A. Cyriac, B. Y. Lee, Dalton Trans.
2
010, 39, 2622.
ate teaching facility, that is, copper wire, magnesium ribbon
and a power supply. The protocol described affords the
highest reported yield for the 3,3-dimethyl-substituted
[
7] D. R. Moore, M. Cheng, E. B. Lobkovsky, G. W. Coates, An-
gew. Chem. Int. Ed. 2002, 41, 2599; Angew. Chem. 2002, 114,
2711.
oxetane and we are currently exploring the CO insertion
2
[8] a) M. R. Kember, C. K. Williams, J. Am. Chem. Soc. 2012, 134,
15676; b) A. Buchard, F. Jutz, M. R. Kember, A. J. White, H. S.
Rzepa, C. K. Williams, Macromolecules 2012, 45, 6781; c)
M. R. Kember, F. Jutz, A. Buchard, A. J. P. White, C. K. Wil-
liams, Chem. Sci. 2012, 3, 1245; d) F. Jutz, A. Buchard, M. R.
Kember, S. B. Fredriksen, C. K. Williams, J. Am. Chem. Soc.
2011, 133, 17395; e) A. Buchard, M. R. Kember, K. G. Sande-
man, C. K. Williams, Chem. Commun. 2011, 47, 212; f) M. R.
Kember, A. Buchard, C. K. Williams, Chem. Commun. 2011,
47, 141; g) M. R. Kember, A. J. P. White, C. K. Williams, Inorg.
Chem. 2009, 48, 9535; h) M. R. Kember, P. D. Knight, P. T. R.
Reung, C. K. Williams, Angew. Chem. Int. Ed. 2009, 48, 931;
Angew. Chem. 2009, 121, 949.
into these challenging substituted oxetanes, for which there
are currently very few commercially available.
Experimental Section
Representative Procedure for the Formation of Cyclic Carbonates:
Trimethylcarbonate (TMC) (2):[
15,24]
Tetrabutylammonium iodide
(0.74 g, 2.0 mmol) was dissolved in acetonitrile (145 mL), the re-
2
sulting solution was flushed with CO for 1 h at room temperature
and trimethylene oxide (0.12 g, 2.0 mmol) added as a solution in
acetonitrile (5 mL). The reactor was heated to 75 °C and potential
was then applied to the system (constant current: 90 mA) for 6 h
in a single compartment cell [Mg anode and Copper(0) cathode].
On completion the reaction mixture was washed with aqueous HCl
[
[
9] A. Decortes, A. J. Kleij, ChemCatChem 2011, 3, 831.
10] a) J. H. Clements, Ind. Eng. Chem. Res. 2003, 42, 663; b) G.
Rokicki, Prog. Polym. Sci. 2000, 25, 259; c) D. J. Darensbourg,
W. Choi, P. Ganguly, C. P. Richers, Macromolecules 2006, 39,
4374; d) D. J. Darensbourg, W. Choi, C. P. Richers, Macromol-
(
0.1 m, 50 mL) followed by extraction with Et
combined organic extracts were then dried with MgSO
rated under reduced pressure to afford an amber oil, which was
suspended in EtOAc (100 mL). After 1 h the precipitated Bu NI
≈ 70%) was removed by filtration and the solvent evaporated un-
2
O (3ϫ 35 mL). The
ecules 2007, 40, 3521; e) D. J. Darensbourg, W. Choi, O. Kar-
roonnirun, N. Bhuvanesh, Macromolecules 2008, 41, 3493; f)
F. Nederberg, B. G. G. Lohmeijer, F. Leibfarth, R. C. Pratt, J.
Choi, A. P. Dove, R. M. Waymouth, J. L. Hedrick, Biomacrom-
olecules 2007, 8, 153; g) N. E. Kamber, W. Jeong, R. M. Waym-
outh, R. Pratt, B. G. G. Lohmeijer, J. L. Hedrick, Chem. Rev.
4
and evapo-
4
(
der reduced pressure to afford an amber oil. This crude material
was purified by column chromatography on silica gel eluting with
ethyl acetate/light petroleum to give a colourless solid (0.196 g,
2
007, 107, 5813; h) J. Mindemark, J. Hilborn, T. Bowden, Mac-
romolecules 2007, 40, 3515.
[
11] A. P. Pêgo, M. J. A. Van Luyn, L. A. Brouwer, P. B.
van Wachem, A. A. Poot, D. W. Grijpma, J. Feijen, J. Biomed.
Mater. Res. 2003, 67A, 1044 and references cited therein.
12] a) D. J. Darensbourg, A. I. Moncada, S. J. Wilson, in Green
Polymerization Methods (Eds.: R. T. Mathers, M. A. R. Meier),
Wiley-VCH, Weinheim, 2010; b) B. Hu, R. Zhuo, C. Fan, Po-
lym. Adv. Technol. 1998, 9, 145.
13] a) A. Baba, H. Meishou, H. Matsuda, Makromol. Chem. Rapid
Commun. 1984, 5, 665; b) A. Baba, H. Kashiwagi, H. Matsuda,
Tetrahedron Lett. 1985, 26, 1323.
6%). M.p. 45–47 °C (lit.[
CDCl , Me
C NMR (100 MHz, CDCl
IR (CH Cl ): ν˜ = 1252 (C–O), 1740 (C=O) cm .
21]
45–47 °C). H NMR (400 MHz,
Si): δ = 2.12–2.18 (m, 2 H), 4.45–4.48 (m, 4 H) ppm.
, Me Si): δ = 21.8, 68.0, 148.5 ppm.
1
9
3
4
13
3
4
[
–1
2
2
Acknowledgments
[
B.R. B. and K.G.U. W. would like to thank the Research Councils
UK for RCUK fellowships (EP/E50082X/1) and Loughborough
University for funding a PhD studentship to A.P. P.
[14] a) A. Baba, H. Kashiwagi, H. Matsuda, Organometallics 1987,
6, 137; b) M. Fujiwara, A. Baba, H. Matsuda, J. Heterocycl.
Chem. 1989, 26, 1659.
[
15] D. J. Darensbourg, A. Horn Jr, A. I. Moncada, Green Chem.
[
[
1] R. J. Pearson, M. D. Eisaman, J. W. G. Turner, P. P. Edwards,
Z. Jiang, V. L. Kuznetsov, K. A. Littau, L. di Marco, S. R. G.
Taylor, Proc. IEEE 2012, 100, 440.
2] Contribution of Working Group III to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change,
2010, 12, 1376.
[
16] a) B. R. Buckley, Y. Chan, N. Dreyfus, C. Elliott, F. Marken,
P. C. B. Page, Green Chem. 2012, 14, 2221; b) P. C. B. Page, F.
Marken, C. Williamson, Y. Chan, B. R. Buckley, D. Bethell,
Adv. Synth. Catal. 2008, 350, 1149.
2
007 (Eds.: B. Metz, O. R. Davidson, P. R. Bosch, R. Dave,
[17] B. R. Buckley, A. P. Patel, K. G. U. Wijayantha, Chem. Com-
L. A. Meyer), Cambridge University Press, United Kingdom
and New York, NY, USA.
mun. 2011, 47, 11888.
18] See ref.[ for optimized conditions.
17]
[
[
[
3] P. Styring, D. Jansen, H. de Coninck, K. Armstrong, Carbon
Capture and Utilisation in the green economy, Report No. 501,
July 2011, The Centre For Low Carbon Futures, ISBN 978–0–
19] See Table S1 in the Supporting Information for full details.
[20] V. Caló, A. Nacci, A. Monopoli, A. Fanizzi, Org. Lett. 2002,
4, 2561.
9572588–0–8.
Eur. J. Org. Chem. 2015, 474–478
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
477