326 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 3
Da Settimo et al.
(13) Collis, M. G.; Hourani, S. M. O. Adenosine Receptor Subtypes.
Trends Pharmacol. Sci. 1993, 14, 360-366.
(38) Perlman, J . H.; Colson, A. O.; Wang, W.; Bence, K.; Osman R.;
Gershengorn, M. C. Interactions Between Conserved Residues
in Transmembrane Helices 1, 2, and
7 of the Tyrotropin-
(14) Poulsen, S.-A.; Quinn, R. J . Adenosine Receptors for Future
Drugs. Bioorg. Med. Chem. 1998, 6, 619-641.
Releasing Hormone Receptor. J . Biol. Chem. 1997, 272, 11937-
11942.
(15) Kim, H. O.; J i, X. D.; Melman, N.; Olah, M. E.; Stiles, G. L.;
J acobson, K. A. Structure-Activity Relationships of 1,3-Dialkyl-
xanthine Derivatives at Rat A3 Adenosine Receptors. J . Med.
Chem. 1994, 37, 3373-3382.
(16) van Galen, P. J . M.; van Bergen, A. H.; Gallo-Rodriguez, C.; Olah,
M. E.; IJ zerman, A. P.; Stiles, G. L.; J acobson, K. A. A Binding
Site Model and Structure-Activity Relationships for the Rat A3
Adenosine Receptor. Mol. Pharmacol. 1994, 45, 1101-1111.
(17) Peet, N. P.; Lentz, N. L.; Meng, E. C.; Dudley, M. W.; Ogden, A.
M. L.; Demeter, D. A.; Weintraub, H. J . R.; Bey, P. A Novel
Synthesis of Xanthines: Support for a New Binding Mode for
Xanthines with Respect to Adenosine at Adenosine Receptors.
J . Med. Chem. 1990, 33, 3127-3130.
(18) van Galen, P. J . M.; van Vlijmen, H. W. T.; IJ zerman, A. P.;
Soudijn, W. A Model for the Antagonist Binding Site on the
Adenosine A1 Receptor Based on Steric, Electrostatic, and
Hydrophobic Properties. J . Med. Chem. 1990, 33, 1708-1713.
(19) Quinn, R. J .; Dooley, M. J .; Escher, A.; Harden, F. A.; J ayasuriya,
H. A Computer Generated Model of Adenosine Receptors Ra-
tionalising binding and Selectivity of Receptor Ligands. Nucleo-
sides Nucleotides 1991, 10, 1121-1124.
(20) Dooley, M. J .; Quinn, R. J . The Three Binding Domain Model of
Adenosine Receptors: Molecular Modeling Aspects. J . Med.
Chem. 1992, 35, 211-216.
(21) IJ zerman, A. P.; van Galen, P. J . M.; J acobson, K. A. Molecular
Modeling of Adenosine Receptors. I. The Ligand Binding Site
on the A1 Receptor. Drug Des. Discovery 1992, 9, 49-67.
(22) Dudley, M. W.; Peet, N. P.; Demeter, D. A.; Weintraub, H. J . R.;
Herschel, J . R.; IJ zerman, A. P.; Nordvall, G.; van Galen, P. J .
M.; J acobson, K. A. Adenosine A1 Receptor and Ligand Molecular
Modeling. Drug Des. Discovery 1993, 28, 237-243.
(23) IJ zerman, A. P.; van der Wenden, E. M.; van Galen, P. J . M.;
J acobson, K. A. Molecular Modeling of Adenosine Receptors -
The Ligand-Binding Site on the Rat Adenosine A2a Receptor.
Eur. J . Pharmacol. Mol. Pharmacol. Sect. 1994, 268, 95-104.
(24) Dooley, M. J .; Kono, M.; Suzuki, F. Theoretical Structure-
Activity Studies of Adenosine A1 Ligands: Requirements for
Receptor Affinity. Bioorg. Med. Chem. 1996, 6, 923-934.
(25) The correspondences between Dooley’s and our receptor binding
sites are herein reported: N7 position/HB1, O6 oxygen/HB2, C8-
position/L1, N1-position/L2, and N3-position/L3 (see Figure 7
in ref 15).
(39) Sealfon, S. C.; Chi, L.; Eversole, B. J .; Rodic, V.; Zhang, D.;
Ballesteros, J . A.; Weinstein, H. Related Contribution of Specific
Helix 2 and 7 Residues to Conformational Activation of the
Serotonin 5-HT2a Receptor. J . Biol. Chem. 1995, 270, 16683-
16688.
(40) Zhou, W.; Flanagan, C. A.; Ballesteros, J .; Konvicka, K.; David-
son, J . S.; Weinstein, H.; Millar, R. P.; Sealfon, S. C. A Reciprocal
Mutation Supports Helix
2 and Helix 7 Proximity in the
Gonadotropin-releasing Hormone Receptor. Mol. Pharmacol.
1994, 45, 165-170.
(41) Burley, S. K.; Petsko, G. A. Aromatic-Aromatic Interaction: a
Mechanism of Protein Structure Stabilitation. Science 1995, 229,
23-28.
(42) J avitch, J . A.; Li, X.; Kaback, J .; Karlin, A. A Cysteine Residue
in the Third Membrane-Spanning Segment of the Human D2
Dopamine Receptor Is Exposed in the Binding-Site Crevice. Proc.
Natl. Acad. Sci. U.S.A. 1994, 91, 10355-10359.
(43) J avitch, J . A.; Fu, D. Y.; Chen, J . Y.; Karlin, A. Residues in the
Fifth Membrane-Spanning Segment of the Dopamine D2 Recep-
tor Exposed in the Binding-Site Crevice. Biochemistry 1995, 34,
16433-16439.
(44) J avitch, J . A.; Fu, D.; Liapakis, G.; Chen, J . Constitutive
Activation of the 2 Adrenergic Receptor Alters the Orientation
of its Sixth Membrane-Spanning Segment. J . Biol. Chem. 1997,
272, 18546-18549.
(45) Fu, D.; Ballesteros, J . A.; Weinstein, H.; Chen, J .; J avitch, J . A.
Residues in the Seventh Membrane-Spanning Segment of the
Dopamine D2 Receptor Accessible in the Binding-Site Crevice.
Biochemistry 1996, 35, 11278-11285.
(46) Meng, E. C.; Shoichet, B. K.; Kuntz, I. D. Automated Docking
with Grid-Based Energy Evaluation. J . Comput. Chem. 1992,
13, 505-524.
(47) Meng, E. C.; Gschwend, D. A.; Blaney, J . M.; Kuntz, I. D.
Orientational Sampling and Rigid-Body Minimization in Mo-
lecular Docking. Proteins: Struct., Funct., Genet. 1993, 17, 266-
278.
(48) Shoichet, B. K.; Bodian, D. L.; Kuntz, I. D. Molecular Modeling
Using Shape Descriptors. J . Comput. Chem. 1992, 13, 380-397.
(49) Connolly, M.; Gschwend, D. A.; Good, A. C.; Oshiro, C.; Kuntz,
I. D. DOCK 3.5, Department of Pharmaceutical Chemistry,
University of California, San Francisco, CA, 1995.
(50) The RELIBase service was used to retrieve the complexes filed
with the following PDB entry codes: 1A82; 1B8O; 1DAG; 1UOX;
1VFN; 1MUD; 1ZIN; 1DAH; 1BX4; 4HOH; 1KI5; 1AGR; 1QHI;
1GNQ; 1CLU; 1KI2; 1ULB; 1GNP; 1AZ1; 1RH3. RELIBase is a
Web-based service to retrieve ligand/receptor structures depos-
ited in the Brookhaven Protein Data Bank using substructure
queries (http://pdb.pdb.bnl.gov:8081/home.html).
(51) Bernstein, F. C.; Koetzle, T. F.; Williams, G. J . B.; Meyer, E. F.,
J r.; Brice, M. D.; Rodgers, J . R.; Kennard, O.; Shimanouchi, T.;
Tasumi, M. The Protein Data Bank: A Computer-Based Archival
File for Macromolecular Structure. J . Mol. Biol. 1977, 112, 535-
542.
(52) Compound III was selected for docking because it features,
similarly to the ATBI derivative 23, an aromatic moiety filling
the putative lipophilic L1 pocket and, similarly to compound VII,
all the six hypothesized pharmacophoric elements.
(53) Rivkees, S. A.; Barbhaiya, H.; IJ zerman, A. P. Identification of
the Adenine Binding Site of the Human A1 Adenosine Receptor.
J . Biol. Chem. 1999, 274, 3617-3621.
(54) Townsend-Nicholson, A.; Schofield, P. R. A Threonine Residue
in the 7th Transmembrane Domain of the Human A1-Adenosine
Receptor Mediates Specific Agonist Binding. J . Biol. Chem. 1994,
269, 2373-2376.
(55) Tucker, A.; Robeva, A. S.; Taylor, H. E.; Holeton, D.; Bockner,
M.; Lynch, K. R.; Linden, J . A1 Adenosine Receptors-2 Amino
acids are Responsible for Species-Differences in Ligand Recogni-
tion. J . Biol. Chem. 1994, 269, 27900-27906.
(56) Olah, M. E.; Ren, H. Z.; Ostrowski, J .; J acobson, K. A.; Stiles,
G. L. Cloning, Expression, and Characterization of the Unique
Bovine-A1 Adenosine Receptor-Studies on the Ligand Binding
Site by Site-Directed Mutagenesis. J . Biol. Chem. 1992, 267,
10764-10770.
(57) The orientation of 25 within the A1AR binding site, as depicted
in Figure 5, was obtained by a simple overlay of this ligand on
the docked geometry of 23 about their common skeleton.
(58) Mattos, C.; Ringe, D. Multiple Binding Modes. In 3D QSAR in
Drug Design. Theory Methods and Applications; Kubinyi, H., Ed.;
ESCOM: Leiden, 1993; pp 117-136.
(26) Bednyagina, N. P.; Postovskii, I. Ya. Benzazoles. 2-Hydrazino-
and 2-Azidobenzimidazoles. Zh. Obshchei Khim. 1960, 30, 1431-
1437; Chem. Abstr. 1961, 55, 1586h.
(27) de Zwart, M.; Kourounakis, A.; Kooijman, H.; Spek, A. L.; Link,
R.; von Frijtag Drabbe Ku¨nzel, J . K.; IJ zerman, A. P. 5′-N-
Substituted Carboxamidoadenosines as Agonists for Adenosine
Receptors. J . Med. Chem. 1999, 42, 1384-1392.
(28) J acobson, K. A.; Nikodijevic, O.; Shi, D.; Gallo-Rodriguez, C.;
Olah, M. E.; Stiles, G. L.; Daly, J . V. A Role for Central
A3-Adenosine Receptors Mediation of Behavioral Depressant
Effects. FEBS Lett. 1993, 336, 57-60.
(29) Tyurenkova, G. N.; Mudretsova, I. I.; Mertsalov, S. L.; Bednya-
gina, N. P. Synthesis, Structures and Tautomerism of Forma-
zans Containing
a 1-Arylbenzimidazol-2-yl Residue. Khim.
Geterotsikl. Soedin. 1980, 6, 818-821; Chem. Abstr. 1980, 93,
203744p.
(30) Robison, M. M. Chlorodehydroxylation of Nitrogen Heterocycles
with Phenylphosphonic Dichloride. J . Am. Chem. Soc. 1958, 80,
5481-5483.
(31) Iemura, R.; Kawashima, T.; Ito, K.; Tsukamoto, G. Synthesis of
2-(4-Substituted-1-piperazinyl)benzimidazoles as H1 Antihista-
minic Agents. J . Med. Chem. 1986, 29, 1178-1183.
(32) Clark, R. L.; Pessolano, A. A. Synthesis of Some Substituted
Benzimidazolones. J . Am. Chem. Soc. 1958, 80, 1657-1662.
(33) Eckert, H.; Forster, B. Triphosgene, a Crystalline Phosgene
Substitute. Angew. Chem., Int. Ed. Engl. 1987, 26, 894-895.
(34) Bikker J . A., Trumpp-Kallmeyer S., Humblet C. G-Protein
Coupled Receptors: Models, Mutagenesis, and Drug Design. J .
Med. Chem. 1998, 41, 2911-2927.
(35) The amino acid sequence of the bovine A1AR was used in these
studies to reflect the source of the binding affinity data consisting
of bovine brain A1AR membrane preparations.
(36) Unger, V. M.; Hargrave, P. A.; Baldwin J . M.; Schertler, G. F.
X. Arrangement of Rhodopsin Transmembrane Alpha Helices
Obtained by Electron Cryo-microscopy. Nature 1997, 389, 203-
206.
(37) Baldwin, J . M.; Schertler, G. F. X.; Unger, V. M. An Alpha-carbon
Template for the Transmembrane Helices in the Rhodopsin
Family of G-protein-coupled Receptors. J . Mol. Biol. 1997, 272,
144-164.
(59) Kubinyi, H. Similarity and Dissimilarity: A Medicinal Chemist’s
View. In 3D QSAR in Drug Design. Ligand-Protein Interactions
and Molecular Similarity; Kubinyi, H., Folkers, G., Martin, Y.
C., Eds.; KLUWER/ESCOM:1998; Vol. 2, pp 225-252.