10.1002/ejic.201701181
European Journal of Inorganic Chemistry
COMMUNICATION
were recorded at a scattering angle θ = 90o and analyzed by the non-
negatively constrained least squares technique (NNLS-Multiple Pass) for
the determination of particles diameter. All the suspensions were
[13] J. G. Croissant, X. Cattoën, J.-O. Durand, M. Wong Chi Man, N. M.
Khashab, Nanoscale, 2016, 8, 19945-19972.
[14] A. Arkhireeva, J. N. Hay, J. Mater. Chem., 2003, 13, 3122-3127.
[15] M. Nakamura, K. Ishimura, J. Phys. Chem. C, 2007, 111, 18892-18898.
[16] J. Macan, K. Tadanaga, M. Tatsumisago, J. Sol-Gel Sci. Technol., 2010,
53, 31-37.
sonicated for
5 seconds prior measurement at 20°C. For DLS
measurements, all measurements were run in triplicate to obtain the size
standard deviation.
[17] M. Nakamura, K. Ishimura, Langmuir, 2008, 24, 5099-5108.
[18] A. Arkhireeva, J. N. Hay, Chem. Mater., 2005, 17, 875-880.
[19] A. Arkhireeva, J. N. Hay, W. Oware, J. Non-Cryst. Solids, 2005, 351,
1688-1695.
Transmission electron microscopy
A drop of sample in aqueous solution (7 µl) was deposited on carbon-
coated copper grids (400 mesh, Electron Microscopy Sciences). After 3
minutes, the excess liquid was blotted with filter paper (Whatman #4). TEM
was performed at RT using a FEI Technai Spirit G2 operating at 120 kV.
Images were recorded on a Gatan Orius CCD camera.
[20] I. Noda, T. Kamoto, M. Yamada, Chem. Mater., 2000, 12, 1708-1714.
[21] F. Baumann, M. Schmidt, B. Deubzer, M. Geck, J. Dauth,
Macromolecules, 1994, 27, 6102-6105.
Fluorescence spectroscopy
[22] I. Noda, M. Isikawa, M. Yamawaki, Y. Sasaki, Inorg. Chim. Acta, 1997,
263, 149-152.
Fluorescence measurements were recorded on a Fluoromax-3 (Horiba
Jobin Yvon Perkin Elmer LS55) spectrometer, with a 150-W ozone-free
xenon arc-lamp as excitation source. Emission spectra (350-650 nm for 3,
and 390-725 nm for rhodamine B @ 3) were recorded with excitation
wavelength of 375 and 378 nm in absence and presence of rhodamine B
respectively. The bandpass of the excitation and emission
monochromators was set at 5 nm, and the scan speed at 10 nm/sec.
Samples were investigated at 25 °C in 1 cm path length cells.
[23] A. Arkhireeva, J. N. Hay, J. M. Lane, M. Manzano, H. Masters, W. Oware,
S. J. Shaw, J. Sol-Gel Sci. Technol., 2004, 31, 31-36.
[24] M. Nakamura, K. Hayashi, M. Nakano, T. Kanadani, K. Miyamoto, T. Kori,
K. Horikawa, ACS Nano, 2015, 9, 1058-1071.
[25] S. Dirè, V. Tagliazucca, E. Callone, A. Quaranta, Mater. Chem. Phys.,
2011, 126, 909-917.
[26] X. Li, Y. Yang, Q. Yang, J. Mater. Chem. A, 2013, 1, 1525-1535.
[27] Q. Wang, Y. Liu, H. Yan, Chem. Commun., 2007, 2339-2341.
[28] F. Dong, W. Guo, S.-W. Chu, C.-S. Ha, Chem. Commun., 2010, 46,
7498-7500.
Acknowledgements
[29] F. Dong, W. Guo, S.-S. Park, C.-S. Ha, J. Mater. Chem., 2011, 21,
10744-10749.
The authors thank Clément Sanchez, François Ribot and Cédric
Boissière for fruitful discussions, Gervaise Mosser for cryoTEM
observations and careful reading of the manuscript, Patrick le
Griel for his help in electron microscopy, Cristina Coelho-Diogo
for solid-state NMR, Mohamed Selmane for PXRD experiments,
the CNRS and the Idex PSL ANR-10-IDEX-0001-02 PSL for
funding.
[30] Y. Xing, J. Peng, K. Xu, W. Lin, S. Gao, Y. Ren, X. Gui, S. Liang, M.
Chen, Chem. Eur. J., 2016, 22, 2114-2126.
[31] H. Ujiie, A. Shimojima, K. Kuroda, Chem. Commun., 2015, 51, 3211-
3214.
[32] P. Horcajada, A. Rámila, G. Férey, M. Vallet-Regí, Solid State Sci., 2006,
8, 1243-1249.
[33] A. Liberman, N. Mendez, W. C. Trogler, A. C. Kummel Surf. Sci. Rep.,
2014, 69, 132-158.
[34] P. Yang, S. Gaib, J. Lin, Chem. Soc. Rev., 2012, 41, 3679-3698.
[35] D. Kumar, I. Mutreja, P. C. Keshvan, M. Bhat, A. K. Dinda, S. Mitra, J.
Pharm. Sci., 2015, 104, 3943-3951.
Keywords: hybrid nanoparticles • supramolecular assembly •
alkoxysilane
[36] N. Ornelas-Soto, R. Rubio-Govea, C. E. Guerrero-Beltrán, E. Vázquez-
Garza, J. Bernal-Ramírez, A. García-García c, Y. Oropeza-Almazán, G.
García-Rivas, F. F. Contreras-Torres, Mater. Sci. Eng. C, 2017, 79, 831-
840.
[1]
[2]
[3]
W. Cai, C.-C. Chu, G. Liu, Y.-X. J. Wáng, Small, 2015, 11, 4806-4822.
J. Della Rocca, D. Liu, W. Lin, Acc Chem Res., 2011, 44, 957-968.
A. Carné, C. Carbonell, I. Imaz, D. Maspoch, Chem. Soc. Rev., 2011, 40,
291–305.
[37] H. J. Hah, J. S. Kim, B. J. Jeon, S. M. Koo, Y. E. Lee, Chem. Commun.,
2003, 1712-1713.
[4]
[5]
[6]
[7]
R.-R. Gao, S. Shi, Y.-J. Li, M. Wumaier, X.-C. Hu, T.-M. Yao, Nanoscale,
2017, 9, 9589–9597.
[38] J. Qian, X. Li, M. Wei, X. Gao, Z. Xu, S. He, Opt. Express, 2008, 16,
19568-19578.
H.-H. Zeng, W.-B. Qiu, L. Zhang, R.-P. Liang, J.-D. Qiu, Anal. Chem.
2016, 88, 6342-6348.
[39] R. Kumar, I. Roy, T. Y. Hulchanskyy, L. N. Goswami, A. C. Bonoiu, E. J.
Bergey, K. M. Tramposch, A. Maitra, P. N. Prasad, ACS Nano, 2008, 2,
449-456.
C. Aimé, R. Nishiyabu, R. Gondo, N. Kimizuka, Chem. Eur. J., 2010, 16,
3604-3607.
[40] J. J. E. Moreau, L. Vellutini, M. Wong Chi Man, C. Bied, J. Am. Chem.
Soc. 2001, 123, 1509-1510.
Y. Liu, K. Kathan, W. Saad, R. K. Prud’homme, Phys. Rev. Lett., 2007,
98, 036102.
[41] J. J. E. Moreau, L. Vellutini, M. Wong Chi Man, C. Bied, P. Dieudonné,
J.-L. Bantignies, J.-L. Sauvajol, Chem. Eur. J. 2005, 11, 1527-1537.
[42] A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, K. Kuroda, J. Am. Chem.
Soc. 2005, 127, 14108-14116.
[8]
[9]
W. S. Saad, R. K. Prud’homme, Nano Today, 2016, 11, 212-227.
Z. Zhu, Biomaterials, 2013, 34, 10238-10248.
[10] Z. Zhu, K. Margulis-Goshen, S. Magdassi, Y. Talmon, C. W. Macosko, J.
Pharm. Sci., 2010, 99, 4295-4306.
[11] A. P. Wight, M. E. Davis, Chem. Rev., 2002, 102, 3589-3614.
[12] C. Sanchez, B. Lebeau, F. Chaput, J.-P. Boilot, Adv. Mater., 2003, 15,
1969-1994.
This article is protected by copyright. All rights reserved.