Paper
RSC Advances
pounds bind to the particle surfaces and a small amount of
ligand exchange occurs but that has no significant effect on
the complexation ability. Addition of short alkanethiol
9 F. Ciesa, A. Plech, C. Mattioli, L. Pescatori, A. Arduini,
A. Pochini, F. Rossi and A. Secchi, J. Phys. Chem. C, 2010,
1
14, 13601–13607.
0 S. Ishihara and S. Takeoka, Tetrahedron Lett., 2006, 47,
81–184.
1
1
(butanethiol) among the calixarenes on the gold surface
1
showed no impact on the complexation ability, but the longer
dodecanethiol clearly interfered with it, suggesting the
possibility of tuning the calixarene complexation ability or
selectivity.
1 M. Dionisio, F. Maffei, E. Rampazzo, L. Prodi, A. Pucci,
G. Ruggeri and E. Dalcanale, Chem. Commun., 2011, 47,
6596–6598.
12 J.-M. Ha, A. Katz, A. B. Drapailo and V. I. Kalchenko, J. Phys.
Light scattering experiments, combined with TGA and
TEM, showed interesting results for C-AuNP nanoparticles. In
the TEM images, the average diameter of C-AuNP was found to
be 3.11 nm, with y60 calixarene groups attached per gold
nanoparticle. Complexation studies showed that at the
saturation ratio, Pyr-C16 pyridinium groups, on average,
complexed with 69% of these cavities. For polymeric Pyr-
PEO2k-Pyr the corresponding value was 36%. Light scattering
studies, confirmed with UV-Vis spectroscopy, showed that
addition of Pyr-PEO2k-Pyr induced the aggregation of the
particles. However, even larger aggregates were formed when
C-AuNP was complexed with Pyr-C16. This was rationalized by
assuming solution phase interdigitation of polar Pyr-C16
molecules, either into metal nanoparticle bound calixarene
shell itself or other Pyr-C16 aliphatic chains attached to the
electron rich calixarene cavity.
Chem. C, 2009, 113, 1137–1142.
13 J.-M. Ha, A. Solovyov and A. Katz, Langmuir, 2009, 25,
153–158.
14 J.-M. Ha, A. Solovyov and A. Katz, J. Phys. Chem. C, 2010,
114, 16060–16070.
1
1
5 C. D. Gutsche and M. Iqbal, Org. Synth., 1989, 68, 234–236.
6 R. M ´e tivier, I. Leray, B. Lebeau and B. Valeur, J. Mater.
Chem., 2005, 15, 2965–2973.
7 J. Gong, V. G. Vaidyanathan, X. Yu, T. W. Kensler, L.
A. Peterson and S. J. Sturla, J. Am. Chem. Soc., 2007, 129,
1
2101–2111.
1
8 M. Brust, D. Bethell, C. J. Kiely and D. J. Schiffrin,
Langmuir, 1998, 14, 5425–5429.
19 A. C. Templeton, M. J. Hostetler, C. T. Kraft and R.
W. Murray, J. Am. Chem. Soc., 1998, 120, 1906–1911.
20 Z. Tang, D. A. Robinson, N. Bokossa, B. Xu, S. Wang and
G. Wang, J. Am. Chem. Soc., 2011, 133, 16037–16044.
2
2
2
1 W. Burchard, Advances in Polymer Science, Springer Verlag,
Berlin Heidelberg, 1999, vol. 143, pp. 113–194.
2 B. Chu, Laser Light Scattering: Basic Principles and Practice,
Academic Press, Boston, 1991, pp. 4–318.
3 W. Sch ¨a rtl, Light Scattering from Polymer Solutions and
Nanoparticle Dispersions, Springer Verlag, Berlin
Heidelberg, 2010, pp. 1–183.
Acknowledgements
We would like to thank the FUNMAT Center of Excellence for
Functional Materials and the Academy of Finland (project no.
127329) for financial support. We also thank Janne
2
2
4 L. J. Bauer and C. D. Gutsche, J. Am. Chem. Soc., 1985, 107,
Ruokolainen and Jani Seitsonen for assistance with TEM
measurements. Sami Hietala is thanked for assistance with the
Material Studio software.
6063–6069.
5 A. M ¨a ¨a tt ¨a nen, P. Ihalainen, P. Pulkkinen, S. Wang,
H. Tenhu and J. Peltonen, ACS Appl. Mater. Interfaces,
2
012, 4, 955–964.
6 R. G. Shimmin, A. B. Schoch and P. V. Braun, Langmuir,
004, 20, 5613–5620.
7 O. Kuchma, Y. Zub and A. Dabrowski, Colloid J., 2006, 68,
21–728.
8 R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy,
I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland, W.
D. Luedtke and U. Landman, Adv. Mater., 1996, 8, 428–433.
2
2
2
2
References
1
M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and
R. Whyman, J. Chem. Soc., Chem. Commun., 1994, 801–802.
G. Ozin and A. Arsenault, Nanochemistry: A chemical
approach to nanomaterials, Royal Society of Chemistry,
Cambridge, 2005, pp. 265–319.
7
2
29 M. K. Corbierre, N. S. Cameron and R. B. Lennox,
Langmuir, 2004, 20, 2867–2873.
3
C. D. Gutsche, Calixarenes, Royal Society of Chemistry,
Cambridge, 1989, pp.149–181.
30 M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R.
W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J.
J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N.
D. Evans and R. W. Murray, Langmuir, 1998, 14, 17–30.
31 R. H. Terrill, T. A. Postlethwaite, C. Chen, C.-D. Poon,
A. Terzis, A. Chen, J. E. Hutchison, M. R. Clark and
G. Wignall, J. Am. Chem. Soc., 1995, 117, 12537–12548.
32 A. Swami, A. Kumar and M. Sastry, Langmuir, 2003, 19,
1168–1172.
4
5
6
M.-C. Daniel and D. Astruc, Chem. Rev., 2004, 104, 293–346.
A. Wei, Chem. Commun., 2006, 1581–1591.
J.-M. Ha, A. Solovyov and A. Katz, Langmuir, 2009, 25,
1
0548–10553.
C. Han, L. Zeng, H. Li and G. Xie, Sens. Actuators, B, 2009,
37, 704–709.
7
8
1
A. Arduini, D. Demuru, A. Pochini and A. Secchi, Chem.
Commun., 2005, 645–647.
7
42 | RSC Adv., 2013, 3, 733–742
This journal is ß The Royal Society of Chemistry 2013