3998
Y. Takahashi et al. / Tetrahedron Letters 47 (2006) 3995–3999
Table 2. Steady-state photolysis of 11
Ph Ph
OMe
O
)
N
MeO
2
N
N2
N
O
hν
hν
2 + 4 + 9 +
5
+
+
Ph Ph
Ph Ph
Ph
Ph
Ph Ph
Ph Ph
11
12
13
14
15
Entry
Solvent
[11] (mM)
Time (h)
Products (yield (%))
1
2
3
4a
Benzene
Benzene
MeCN
MeCN
6.70
3.35
6.70
6.70
13
13
8
2 (4), 4 (10), 9 (2), 13 (<1), 14 (43), 15 (36)
2 (5), 4 (11), 9 (2), 13 (2), 14 (39), 15 (38)
2 (1), 4 (8), 9 (0), 13 (1), 14 (52), 15 (9)
2 (2), 4 (30), 9 (5), 13 (1), 14 (5), 15 (1)
13
A nitrogen-saturated solution of 11 (0.20 mmol) was irradiated by a 300 W medium pressure mercury lamp (k >300) and the reaction mixture was
analyzed by 1H NMR (300 MHz).
a Irradiated by four low pressure mercury lamps (254 nm, Toshiba GL-20, 15 W).
itself to have the optimum C1–C3 bond length of
1.836 A, maintaining the C1–C3 bonding and avoiding
References and notes
˚
1. (a) Takahashi, Y.; Mori, Y.; Nakamura, A.; Tomioka, H.
Tetrahedron Lett. 2005, 46, 8415–8418; (b) Takahashi, Y.
Unpublished results; (c) See also Ref. 2 for photochem-
istry of methylenecyclopropanes.
2. (a) Kende, A. S.; Goldschmidt, Z.; Smith, R. F. J. Am.
Chem. Soc. 1970, 92, 7606–7607; (b) Gilbert, J. C.; Butler,
J. R. J. Am. Chem. Soc. 1970, 92, 7493–7494; (c) Gilbert, J.
C.; Luo, T. J. Org. Chem. 1981, 46, 5237–5239; (d)
Mizuno, K.; Maeda, H.; Sugita, H.; Nishioka, S.; Hirai,
T.; Sugimoto, A. Org. Lett. 2001, 3, 581–584; (e) Mizuno,
K.; Ichinose, N.; Yoshimi, Y. J. Photochem. Photobiol. A:
Chem. 2000, 1, 167–193.
overelongation.
Two transition states, TS5–2 and TS5–4 for 1,2-C and
1,2-H shift of 5, respectively, also have longer C1–C3
distances and thereby are not stabilized compared to
TS3–2 or TS3-4. However, energy barriers for both 1,2-
C and 1,2-H shifts leading to 2 and 4, respectively,
become somewhat low (3.1 and 4.8 kcal molÀ1) because
the energy level of the starting structure 5 is already
high. While these lower energy barriers of 3.1 and
4.8 kcal molÀ1 (relative to 5) appear to be in line with
the LFP results showing that the lifetime of 5 is compa-
rable to or a little shorter than that of parent cyclobutyl-
idene, the predicted preference based on the calculated
barrier heights disagrees with the observation that 1,2-
H migration is more feasible to give 4 than 1,2-C migra-
tion to give 2. However, it is important to note that the
energy difference between the barrier heights is fairly
small (only 1.7 kcal molÀ1) and that such a small differ-
ence in calculated energies can be upset in solution even-
tually by enthalpic factors like solvation and/or entropic
factors. In fact, 4/2 ratios observed in the steady-state
photolyses of oxadiazoline 11 appear to depend on sol-
vent polarity (Table 2). The values are almost one order
of magnitude higher in polar acetonitrile than those in
non-polar benzene. These observations are reminiscent
of a LFP study of 1-phenyldiazoethane,22 which demon-
strated that the transition state of the 1,2-H shift in 1-
phenylethylidene is polar and the rate can be accelerated
by more than a factor of 30 in polar acetonitrile.
3. Reactive Intermediate Chemistry; Moss, A. M., Platz,
M. S., Jones, M., Jr., Eds.; Wiley: New York, 2004.
´
4. (a) Majchrzak, M. W.; Bekhazi, M.; Tse-Sheepy, I.;
Warkentin, J. J. Org. Chem. 1989, 54, 1842–1845; (b)
Jefferson, E. A.; Warkentin, J. J. Am. Chem. Soc. 1992,
114, 6318–6325; (c) Jefferson, E. A.; Warkentin, J. J. Org.
Chem. 1994, 59, 455–462; (d) Adam, W.; Finzel, R.
Tetrahedron Lett. 1990, 31, 863–866; (e) Warkentin, J. J.
Chem. Soc., Perkin Trans. 1 2000, 2161–2169.
5. (a) Pezacki, J. P.; Pole, D. L.; Warkentin, J.; Chen, T.;
Ford, F.; Toscano, J. P.; Fell, J.; Platz, M. S. J. Am. Chem.
Soc. 1997, 119, 3191–3192; (b) Pezacki, J. P.; Warkentin,
´
J.; Wood, P. D.; Lustzyk, J.; Yuzawa, T.; Gudmundsdot-
tir, A. D.; Platz, M. S. J. Photochem. Photobiol. A 1998,
116, 1–7; (c) Bonneau, R.; Hellrung, B.; Liu, M. T. H.;
Wirz, J. J. Photochem. Photobiol. A 1998, 116, 9–19; (d)
Pezacki, J. P.; Wood, P. D.; Gadosy, T. A.; Lustzyk, J.;
Warkentin, J. J. Am. Chem. Soc. 1998, 120, 8681–8691.
6. (a) Friedman, L.; Schechter, H. J. Am. Chem. Soc. 1960,
82, 1002–1003; (b) Brinker, U. H.; Schenker, G. J. Chem.
Soc., Chem. Commun. 1982, 679.
7. (a) Sulzbach, H. M.; Platz, M. S.; Schaefer, H. F.; Hadad,
C. M. J. Am. Chem. Soc. 1997, 119, 5682–5689; (b)
Stracener, L. L.; Halter, R. J.; McMahon, R. J.; Castro,
C.; Karney, W. J. Org. Chem. 2000, 65, 199–204; (c)
Schoeller, W. W. J. Am. Chem. Soc. 1979, 101, 4811–4815;
(d) Wang, B.-Z.; Deng, C.-H. Chin. J. Chem. 1990, 102–
109.
Additional experimental and theoretical studies are
under way to understand the interrelationship among
substitution, structure, and reactivity of other types of
carbenes.
8. Progress of the reaction can be monitored by IR
spectroscopy with particular regard to diazocyclobutane
7 (2027 cmÀ1) and methyl carbonate (1755 cmÀ1).
9. Considering from the lifetime of carbene 5, it seems more
likely that dimer 14 is produced by the reaction of carbene
5 with diazocyclobutane 12 rather than dimerization of
Acknowledgments
Support of this work by a Grant-in-Aid for Scientific
Research from Ministry of Education, Culture, Sports,
Science and Technology of Japan is greatly acknowledged.