C O M M U N I C A T I O N S
Table 1. Synthesis of trans-Cyclooctene Derivativesc
In summary, selective complexation to AgNO3/silica was used
to facilitate photochemical syntheses of trans-cyclooctene deriva-
tives on a useful scale. A derivative adopts a crown conformation
despite an axial substituent, and it was shown that alkene stereo-
chemistry is transferred to the hexahydropyrrolizine framework in
the transannular cyclization of 5-aza-trans-cyclooctene.
Acknowledgment. This work was supported by NIH Grant
GM068640-01.
Supporting Information Available: The photochemical apparatus
is described in detail. Provided are experimental and characterization
details, 1H and 13C NMR spectra for new compounds, NOE data for 4,
and CIF files for 2c, 3, and the desmethyl analogue of 2g. This material
References
(1) (a) Cope, A. C.; Pawson, B. A. J. Am. Chem. Soc. 1965, 87, 3649. (b)
Bach, R. D.; Mazur, U.; Hamama, I.; Lauderback, S. K. Tetrahedron 1972,
28, 1955. (c) Allinger, N. L.; Sprague, J. T. J. Am. Chem. Soc. 1972, 94,
5734.
(2) (a) Ermer, O. Angew. Chem., Int. Ed. Engl. 1974, 13, 604. (b) Leong, M.
K.; Mastryukov, V. S.; Boggs, J. E. J. Mol. Struct. 1998, 445, 149.
(3) Shea, K. J.; Kim, J.-S. J. Am. Chem. Soc. 1992, 114, 4846.
(4) (a) Palacios, F.; de Heredia, I. P.; Rubiales, G. Tetrahedron Lett. 1993,
34, 4377. (b) Palacios, F.; de Heredia, I. P.; Rubiales, G. J. Org. Chem.
1995, 60, 2384.
a GC yield. b Diastereomers were separable on silica gel. c Unless noted
otherwise, all yields represent isolated yields as the average of two runs.
(5) Weyler, W.; Byrd, L. R.; Caserio, M. C.; Moore, H. W. J. Am. Chem.
Soc. 1972, 94, 1027.
(6) (a) Ganis, P.; Lepore, U.; Martuscelli, E. J. Phys. Chem. 1970, 74, 2439.
(b) Nicolaides, A.; Smith, J. M.; Kumar, A.; Barnhart, D. M.; Borden,
W. T. Organometallics 1995, 14, 3475. (c) Komiya, S.; Kochi, J. K. J.
Organomet. Chem. 1977, 135, 65. (d) Kinoshita, I.; Terai, Y.; Kashiwabara,
K.; Kido, H.; Saito, K. J. Organomet. Chem. 1977, 127, 237.
(7) (a) Hecht, J. K. Polymer Lett. 1968, 6, 333. (b) Lee, S. J.; McGinnis, J.;
Katz, T. J. J. Am. Chem. Soc. 1976, 98, 7818.
(8) (a) Reese, C. B.; Shaw, A. J. Am. Chem. Soc. 1970, 92, 2566. (b)
Braddock, D. C.; Cansell, G.; Hermitage, S. A.; White, A. J. P.
Tetrahedron: Asymmetry 2004, 15, 3123. (c) Whitham, G. H.; Wright,
M. J. Chem. Soc. 1971, 886. (d) Whitham, G. H.; Wright, M. J. Chem.
Soc. C 1974, 891.
(9) Ziegler, K.; Wilms, H. Liebigs Ann. Chem. 1950, 567, 1. (b) Cope, A.
C.; Bach, R. D. Org. Synth. 1969, 49, 39.
Figure 2. (a) Preparation and X-ray structure of a trans-cyclooctene with
an axial substituent. 1,3-Diaxial interactions are highlighted. (b) Stereospe-
cific, transannular cyclization.
(10) (a) Corey, E. J.; Shulman, J. I. Tetrahedron Lett. 1968, 9, 3655. (b) Vedejs,
E.; Fuchs, P. L. J. Am. Chem. Soc. 1971, 93, 4070. (c) Carnahan, J. C.,
Jr.; Closson, W. D. Tetrahedron Lett. 1972, 33, 3447. (d) Hines, J. N.;
Peagram, M. J.; Thomas, E. J.; Whitham, G. H. J. Chem. Soc., Perkin
Trans. 1973, 1, 2332. (e) Bridges, A. J.; Whitham, G. H. J. Chem. Soc.,
Perkin Trans. 1974, 1, 142.
and all of the preparations in Table 1 were carried out on a useful
scale. The preparations of 2a-2g were carried out with 1 g of the
cis-cyclooctene in 500 mL of solvent (∼0.015 M). Preparations of
2b and 2f were also demonstrated on a larger scale: 5.0 g of the
cis-alkene in 500 mL of solvent gave 3.9 g of 2b and 3.1 g of 2f.
In the preparations of 2b-2g, two diastereomers were formed.
The highest diastereoselectivity was observed in the formation of
2f (dr 11:1). In most cases, the diastereomers were readily separable
on silica. X-ray crystallographic analysis was conducted for the
major diastereomer of 2c and for 3, which was prepared from the
minor diastereomer of 2b. The crown conformation is observed in
both structures. For 3, the crown conformation comes at the expense
of three 1,3-diaxial interactions with the R-alkoxyacetic acid
substituent (Figure 2a). Observation of a crown conformer with an
axial substituent provides evidence that the chair conformer of trans-
cyclooctene is significantly less stable.1b
The availability of functionalized trans-cyclooctenes offers new
possibilities for stereospecific, transannular cyclization reactions.16
As illustration, it was shown that transannular cyclization of 4-aza-
trans-cyclooctene derivative 2h provides entry to the pyrrolizidine
framework that is common to a range of natural products.17 Thus,
treatment of 2h with bromine provides pyrrolizidine 4 in >90%
isomeric purity (crude 1H NMR analysis). Alkene stereochemistry
controls the diasteoselectivity, as 4-aza-cis-cyclooctene leads to the
opposite diastereomer of 4.18
(11) (a) Inoue, Y.; Takamuku, S.; Sakurai, H. Synthesis 1977, 111. (b)
Yamasaki, N.; Inoue, Y.; Yokoyama, T.; Tai, A. J. Photochem. Photobiol.
A 1989, 48, 465. (c) Inoue, Y.; Yokoyama, T.; Yamasaki, N.; Tai, A. J.
Am. Chem. Soc. 1989, 111, 6480. (d) Tsuneishi, H.; Hakushi, T.; Inoue,
Y. J. Chem. Soc., Perkin. Trans. 1996, 2, 1601.
(12) Muhs, M. A.; Weiss, F. T. J. Am. Chem. Soc. 1962, 84, 4697.
(13) (a) Marshall, J. A. Science (Washington, D.C.) 1970, 170, 137. (b) Kropp,
P. J. Mol. Photochem. 1978, 9, 39. (c) Moran, J.; Dornan, P.; Beauchemin,
A. M. Org. Lett. 2007, 9, 3893.
(14) It was previously reported that CuCl (0.38 equiv) can be included in the
photolysis of cis-cyclooctene to give the trans-cyclooctene-CuCl complex
in 19% yield, along with recovered cis-cyclooctene: Deyrup, J. A.;
Betkouski, M. F. J. Org. Chem. 1972, 37, 3561. We attempted similar
photolyses using both substoichiometric and stoichimetric amounts of CuCl
but were unable to achieve high conversion to trans-cyclooctene.
(15) Known limitations of the described method: The photoreaction of
1-methylcyclooctene was unsuccessful because the trans-isomer did not
bind to AgNO3-impregnated silica gel. Also, the carbonate of 2d led only
to products of decomposition. Finally, photoreaction of an analogue of
2g that lacks the N-methyl group (i.e., the free oxazolidionone) proceeded
only in 35% yield but gave a single diastereomer. We believe that the
minor diastereomer decomposes under the reaction conditions, thereby
accounting for the low yield and high diastereoselectivity relative to 2g.
(16) (a) Poon, T. H. W.; Park, S. H.; Elemes, Y.; Foote, C. S. J. Am. Chem.
Soc. 1995, 117, 10468. (b) Cope, A. C.; Fournier, A., Jr.; Simmons, H.
E., Jr. J. Am. Chem. Soc. 1957, 79, 3905. (c) Cope, A. C.; Lee, H.-H.;
Petree, H. E. J. Am. Chem. Soc. 1958, 80, 2849.
(17) (a) Denmark, S. E.; Cottell, J. J. J. Org. Chem. 2001, 66, 4276. (b) de
Vicente, J.; Arrayas, R. G.; Carretero, J. C. Tetrahedron Lett. 1999, 40,
6083. (c) Kang, S. H.; Kim, G. T.; Yoo, Y. S. Tetrahedron Lett. 1997,
38, 603.
(18) Wilson, S. R.; Sawicki, R. A. J. Org. Chem. 1979, 44, 287.
JA8001919
9
J. AM. CHEM. SOC. VOL. 130, NO. 12, 2008 3761