10.1002/chem.201904763
Chemistry - A European Journal
FULL PAPER
the Supporting Information). Data analysis and automatic DOSY
processing 2D-transformation were performed using the MesReNova
14.1 software package, including the “Bayesian”- and newly implemented
“Peak Heights fits”- DOSY Transform processing methods.
Conflicts of interest
The authors declare no competing financial interests.
Keywords: Macrocyclic ligands • Salphen • Schiff bases • Self-
assembly • Supramolecular Chemistry
UV–Vis absorption and fluorescence spectroscopy
Steady-state absorption spectra were recorded on an Agilent Cary 50
UV-Visible spectrophotometer at room temperature, using either a
standard 10 mm- (for low concentration range) or a 1 mm reduced path-
(for high concentration range) UV cuvettes (QS). Fluorescence spectra
were recorded on an HORRIBA Fluorolog®-3 spectrofluorometer using a
10 mm fluorescence UV cuvette (QS).
[1]
X. Liu, C. Manzur, N. Novoa, S. Celedón, D. Carrillo, J.-R. Hamon,
Coord. Chem. Rev., 2019, 357, 144-172.
[2]
[3]
[4]
[5]
[6]
[7]
S. Matsunaga, M. Shibasaki, Chem. Commun., 2014, 50, 1044-1057.
S. Akine, J. Inclusion Phenom. Macrocyclic Chem., 2012, 72, 25-54.
A. K. Crane, M. J. MacLachlan, Eur. J. Inorg. Chem., 2012, 2012, 17-30.
J. Zhou, B. Wang, Chem. Soc. Rev., 2017, 46, 6927-6945.
E. L. Gavey, M. Pilkington, Coord. Chem. Rev., 2015, 296, 125-152.
S.-i. Kawano, Y. Ishida, K. Tanaka, J. Am. Chem. Soc., 2015, 137,
2295-2302.
Atomic Force Microscopy (AFM)
AFM measurements were carried out in a commercial AFM system
(Ntegra Prima, NT-MDT) in semicontact (dynamic) mode using scanning
by sample configuration in ambient conditions. Rectangular silicon
cantilevers HA_NC (NT-MDT) were used with a tip radius of 10 nm. Their
nominal spring constant is 3.5 N/m and its resonance frequency is
around 140 kHz. AFM samples were prepared by either drop-casting or
spin-coating a solution of the macrocycles dissolved in CHCl3, THF,
toluene or mixtures CHCl3/Toluene (1:9 or 1:4) at different concentrations
onto HOPG substrates (See Tables S4 and S5 in the Supporting
Information for details).
[8]
[9]
S.-i. Kawano, T. Hamazaki, A. Suzuki, K. Kurahashi, K. Tanaka, Chem.
- Eur. J., 2016, 22, 15674-15683.
S.-i. Kawano, M. Kato, S. Soumiya, M. Nakaya, J. Onoe, K. Tanaka,
Angew. Chem., Int. Ed., 2018, 57, 167-171.
[10] J. Jiang, R. Y. Dong, M. J. MacLachlan, Chem. Commun., 2015, 51,
16205-16208.
[11] J. Zhang, L. Xu, W.-Y. Wong, Coord. Chem. Rev., 2019, 355, 180-198.
[12] K. Li, G. S. Ming Tong, Q. Wan, G. Cheng, W.-Y. Tong, W.-H. Ang, W.-
L. Kwong, C.-M. Che, Chem. Sci., 2016, 7, 1653-1673.
[13] C.-M. Che, S.-C. Chan, H.-F. Xiang, M. C. W. Chan, Y. Liu, Y. Wang,
Chem. Commun., 2004, 1484-1485.
Transmission Electron Microscopy (TEM)
[14] G. Salassa, J. W. Ryan, E. C. Escudero-Adán, A. W. Kleij, Dalton
Trans., 2014, 43, 210-221.
TEM experiments were performed by the ICTS Centro Nacional de
Microscopía Electrónica at Complutense University of Madrid. TEM
images were obtained on a JEM1400 Transmission Electron Microscope.
Samples were prepared by drop-casting a solution of the macrocycles in
CHCl3 (23-24 M), THF (23‒24 M) or toluene (11‒12 M) onto carbon-
coated grids.
[15] P. A. Vigato, S. Tamburini, Coord. Chem. Rev., 2004, 248, 1717-2128.
[16] M. Martínez Belmonte, S. J. Wezenberg, R. M. Haak, D. Anselmo, E. C.
Escudero-Adán, J. Benet-Buchholz, A. W. Kleij, Dalton Trans. 2010, 39,
4541-4550.
[17] G. Consiglio, I. P. Oliveri, S. Failla, S. Di Bella, Inorg. Chem. 2016, 55,
10320-10328.
Geometry-optimized structures and DFT calculations
[18]
L. Leoni, A. Dalla Cort, Inorganics 2018, 6.
[19] J. K.-H. Hui, P. D. Frischmann, C.-H. Tso, C. A. Michal, M. J.
MacLachlan, Chem. - Eur. J., 2010, 16, 2453-2460.
[20] G. Salassa, A. M. Castilla, A. W. Kleij, Dalton Trans., 2011, 40, 5236-
5243.
Molecular modelling was performed with the Spartan’16 package
(Wavefunction Inc. 1991–2017) software for Windows. Minimized
geometry-optimized structures (in vacuum) were obtained by DFT
calculations at the B3LYP (6-31G*) level.
[21] A. J. Gallant, M. J. MacLachlan, Angew. Chem., Int. Ed., 2003, 42,
5307-5310.
[22] G. Salassa, M. J. J. Coenen, S. J. Wezenberg, B. L. M. Hendriksen, S.
Speller, J. A. A. W. Elemans, A. W. Kleij, J. Am. Chem. Soc. 2012, 134,
7186-7192.
[23] M. V. Escárcega-Bobadilla, G. A. Zelada-Guillén, S. V. Pyrlin, M.
Wegrzyn, M. M. D. Ramos, E. Giménez, A. Stewart, G. Maier, A. W.
Kleij, Nat. Commun. 2013, 4, 2648.
Acknowledgements
[24] G. A. Zelada-Guillén, M. V. Escárcega-Bobadilla, M. Wegrzyn, E.
Giménez, G. Maier, A. W. Kleij, Adv. Mater. Interfaces 2018, 5,
1701585.
We are grateful for the financial support of the MINECO, Spain
(CTQ2017-85393-P). IMDEA Nanociencia acknowledges
support from the ‘Severo Ochoa’ Programme for Centres of
Excellence in R&D (MINECO, Grant SEV-2016-0686). We thank
Maite Alonso Pascual (MALDI-TOF MS), Mª Jesús Vicente
Arana (ESI-MS) and María Dolores Penín Pérez (DOSY NMR)
of the Servicio Interdepartamental de Investigación (SIdI) at the
Autonoma University of Madrid, Dr. Patricia Pedraz (AFM)
research staff at IMDEA Nanociencia Institute and Dr. Esteban
Urones Garrote (TEM) from Centro Nacional de Microscopía
Electrónica at Universidad Complutense de Madrid, for
experiments and helpful discussions.
[25] Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev., 2013, 42,
6634-6654.
[26] C. Yu, Y. Jin, W. Zhang, chapter 3: Shape‐persistent Macrocycles
through Dynamic Covalent Reactions in Dynamic Covalent Chemistry:
Principles, Reactions, and Applications, (Eds.: W. Zhang, Y. Jin), John
Wiley & Sons, Ltd, 2017, pp. 121-163.
[27] F. Mamiya, N. Ousaka, E. Yashima, Angew. Chem., Int. Ed., 2015, 54,
14442-14446.
[28] W. Zhang, J. S. Moore, Angew. Chem., Int. Ed., 2006, 45, 4416-4439.
This article is protected by copyright. All rights reserved.