C O M M U N I C A T I O N S
Table 2. Coupling of E-â-Bromostyrene with N- and
O-Nucleophiles in the Presence of Monomeric and Dendritic
Ligands.a
monomer or
yield
(%)b
nucleophile
dendrimer (mol %)
1
2
3
4
pyrazole
pyrazole
3,5-dimethylphenol
3,5-dimethylphenol
M (10)
2-G3 (0.21)
M (10)
70
100
35
2-G3 (0.21)
91
a E-â-bromostyrene (0.5 mmol), NuH (0.7 mmol), Cs2CO3 (0.7 mmol),
CuI (0.05 mmol), ligand, CH3CN (300 µL), 96 h. b GC yields determined
with internal standard, selectivity: 100%.
Figure 1. Coupling of pyrazole with PhI and PhBr in the presence of
monomer M or dendritic ligands 2-G1 to 2-G3.
complexes is favored, thus explaining the observed enhancement
of reactivity.
iodobenzene at 55 °C using the dendritic ligand 2-G3 (entry 7),
whereas the coupling was found to be much less efficient in the
presence of the monomeric ligand (entry 6) or with ligand B (Table
1, note d). To the best of our knowledge, these are among the
mildest temperature conditions to date to perform copper-catalyzed
arylation of phenols from iodobenzene.5b
Hence, these promising preliminary results encouraged us to
check if a dendritic enhancement was also observed using other
nucleophiles such as nitrogen heterocycles.
First of all, it is worth noting that copper-catalyzed arylation of
pyrazole with aryl halides can be efficiently performed by means
of different chelates such as oxime derivatives or polydentate Schiff
bases.5e,f However, in the presence of monomeric ligand M (one
N,N-chelate per copper atom), no coupling reaction occurred, neither
from iodobenzene, nor from bromobenzene (Figure 1). Thus this
reaction posed a particular challenge for the dendritic ligand. Indeed,
upon replacement of M by dendrimers 2, a very strong enhancement
of the reaction was observed regardless of the nature of the arylating
agent.
In the case of iodobenzene, 2-G1, 2-G2, and 2-G3 enabled
quantitative conversion of substrate into product within 20 h at 80
°C. When starting from less expensive bromobenzene, the better
catalytic activity was once more obtained in the presence of the
third generation dendritic ligand 2-G3, phenylpyrazole being
obtained in 80% yield after 20 h at 80 °C. As far we know, such
a strong dendritic effect has never been reported in the literature.
To expand the scope of the use of such copper-dendrimer
catalysts we also examined (under demanding low-temperature
conditions) the vinylation of 3,5-dimethylphenol and pyrazole with
E-â-bromostyrene.
N-vinylation of pyrazole quantitatively occurred at 25 °C within
4 days with 2-G3 whereas E-styrylpyrazole was obtained in only
70% yield under the same conditions with the monomer M (Table
2, entries 1,2). The related E-styrylarylether could be obtained in
91% yield after 4 days at room temperature when using 2-G3 as
the ligand, whereas in the presence of M, a poor conversion of
only 35% was observed (Table 2, entries 3,4).
Once more, these are the mildest conditions ever reported for
performing the coupling between vinyl bromides and nucleophiles
(azoles or phenols) using catalytic amounts of copper.5a
The general dendritic effect reported here for various coupling
reactions is remarkable although it is difficult to explain. For sure,
high local concentration of chelating imino-pyridine ligands on the
surface of dendrimers is crucial to obtain the best results. Under
these conditions, it is reasonable to think that the formation of
catalytically active species involving copper(I)/imino-pyridine ligand
In conclusion we have demonstrated specific advantages for
copper(I) catalysis of the very important O- and N-arylation and
vinylation of phenol and pyrazole using dendrimer-bound imino-
pyridine ligands. The highest yields under the mildest conditions
have been obtained for these conversions. Such dendritic enhance-
ment is very rare in the field of organometallic chemistry.
Work is underway to examine the scope of this new catalytic
system in arylation and to better understand the phenomena
underlying the observed dendritic enhancement.
Supporting Information Available: Synthesis and characterization
for dendrimers; procedures for catalysis. This material is available free
References
(1) See for example Newkome, G. R.; Vo¨gtle, F.; Moorefield, C. N.
Dendrimers and Dendrons; Wiley-VCH: Weinheim, Germany, 2001.
Frechet, J. M. J.; Tomalia, D. A.; Dendrimers and other Dendritic
Polymers; John Wiley & Sons: Chichester, U.K., 2001.
(2) Some reviews on catalysis with dendrimers: (a) Oosterom, G. E.; Reek,
J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem., Int.
Ed. 2001, 40, 1828. (b) Astruc, D.; Chardac, F. Chem. ReV. 2001, 101,
2991. (c) van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.;
Reek, J. N. H. Chem. ReV. 2002, 102, 3717. (d) Kreiter, R.; Kleij, A. W.;
Gebbink, R. J. M. K.; van Koten, G. Top. Curr. Chem. 2001, 217, 163.
(e) Caminade, A.-M.; Maraval, V.; Laurent, R.; Majoral, J.-P. Curr. Org.
Chem. 2002, 6, 739. (f) Dahan, A.; Portnoy, M. J. Polym. Sci., Part A:
Polym. Chem. 2005, 43, 235. (g) van de Coevering, R.; Klein, Gebbink,
R. J. M.; van Koten, G. Prog. Polym. Sci. 2005, 30, 474. (h) Helms, B.;
Fre´chet, J. M. J. AdV. Synth. Catal. 2006, 348, 1125.
(3) (a) Breinbauer, R.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2000, 39, 3604.
(b) Francavilla, C.; Drake, M. D.; Bright, F. V.; Detty, M. R. J. Am. Chem.
Soc. 2001, 123, 57. (c) Delort, E.; Darbre, T.; Reymond, J.-L. J. Am.
Chem. Soc. 2004, 126, 15642. (d) Delort, E.; Nguyen-Trung, N.-Q.;
Darbre, T.; Reymond, J.-L. J. Org. Chem. 2006, 71, 4468. (e) Dahan, A.;
Portnoy, M. Chem. Commun. 2002, 2700. (f) Dahan, A.; Portnoy, M. Org.
Lett. 2003, 5, 1197. (g) Gatard, S.; Nlate, S.; Cloutet, E.; Bravic, G.; Blais,
J.-C.; Astruc, D. Angew. Chem., Int. Ed. 2003, 4, 452.
(4) Reviews: (a) Kunz, K.; Scholtz, U.; Ganzer, D. Synlett 2003, 15, 2428.
(b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(5) (a) Taillefer, M.; Ouali, A.; Renard, B.; Spindler J.-F. Chem.sEur. J.
2006, 20, 5301. (b) Ouali, A.; Spindler, J.-F.; Cristau, H.-J.; Taillefer, M.
AdV. Synth. Catal. 2006, 348, 499. (c) Cristau, H.-J.; Ouali, A.; Spindler,
J.-F.; Taillefer, M. Chem.sEur. J. 2005, 11, 2483. (d) Cristau, H.-J.;
Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Org. Lett. 2004, 6, 913. (e)
Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Eur. J. Org.
Chem. 2004, 695. (f) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer,
M. Chem.sEur. J. 2004, 10, 5607. (g) Taillefer, M.; Cristau, H.-J.; Cellier,
P. P.; Spindler, J.-F. Fr Patent 0116547, 2001; Fr Patent 2833947, 2003;
Chem. Abstr. 2003, 139, 69290; U.S. Patent 2003 236413, 2003.
(6) (a) Lartigue, M.-L.; Donnadieu, B.; Galliot, C.; Caminade, A.-M.; Majoral,
J.-P.; Fayet, J.-P. Macromolecules 1997, 30, 7335. (b) Turrin, C.-O.;
Chiffre, J.; de Montauzon, D.; Daran, J.-C.; Caminade, A.-M.; Manoury,
E.; Balavoine, G.; Majoral, J.-P. Macromolecules 2000, 33, 7328. (c)
Leclaire, J.; Coppel, Y.; Caminade, A.-M.; Majoral, J.-P. J. Am. Chem.
Soc. 2004, 126, 2304. (d) Leclaire, J.; Dayral, R.; Fery-Forgues, S.; Coppel,
Y.; Donnadieu, B.; Caminade, A.-M.; Majoral, J.-P. J. Am. Chem. Soc.
2005, 127, 15762.
JA066505S
9
J. AM. CHEM. SOC. VOL. 128, NO. 50, 2006 15991