Journal of the American Chemical Society
Article
in compensating changes in kcat and Km, but little or no change in
kcat/Km.
REFERENCES
■
(1) Herschlag, D.; Natarajan, A. Biochemistry 2013, 52, 2050−2067.
(2) Fersht, A. R. Biochemistry 1988, 27, 1577−1580.
(3) Fersht, A. R. Biochemistry 1987, 26, 8031−8037.
(4) Goldman, L. M.; Amyes, T. L.; Goryanova, B.; Gerlt, J. A.; Richard,
J. P. J. Am. Chem. Soc. 2014, 136, 10156−10165.
(5) Zhai, X.; Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 2014, 136,
4145−4148.
We previously reported that the L232A mutation of TbbTIM
results in a 17-fold increase in the second-order rate constant
(kcat/Km)E for TIM-catalyzed proton transfer reactions of the
truncated substrate piece [1-13C]-GA in D2O (Scheme 2).65 We
have proposed that the hydrophobic side chain of L232 functions
to cause an increase the barrier to the protein conformational
change ΔGC (Figure 7), that reduces the substrate binding
energy expressed at the Michaelis complex.47,65 The L232A
mutation then results in an increase in the fraction of enzyme
present in the active closed form (increase in ΔGC), and in
similar increases in the values of kinetic parameters that depend
upon the magnitude of ΔGC: (kcat/Km)E, KX and (kcat/Km)E·X/KX
(Figure 7)47,65
(6) Richard, J. P.; Amyes, T. L.; Goryanova, B.; Zhai, X. Curr. Opin.
Chem. Biol. 2014, 21, 1−10.
(7) Spong, K.; Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 2013, 135,
18343−18346.
(8) Zhai, X.; Amyes, T. L.; Wierenga, R. K.; Loria, J. P.; Richard, J. P.
Biochemistry 2013, 52, 5928−5940.
(9) Zhai, X.; Go, M. K.; Donoghue, A. C.; Amyes, T. L.; Pegan, S. D.;
Wang, Y.; Loria, J. P.; Mesecar, A. D.; Richard, J. P. Biochemistry 2014,
53, 3486−3501.
The Role of Conformational Changes in Enzyme
Catalysis. There are good reasons to refer to enzyme structures
as plastic, in recognition of the large changes in structure
observed during the catalytic cycle.9,75−78 There is an ongoing
debate about the role of these conformational changes in
catalysis.79 On the one hand, protein motions may be coupled to
motion along the reaction coordinate, and might even contribute
to the catalytic rate acceleration by promoting formation of the
transition state.80−83 However, a strong case can be made that
effective enzymatic catalysis is due to the preorganization of
catalytic side chains into their catalytically active conformations,
which optimizes their stabilizing interactions with the transition
state.69,84,85 The far from definitive experimental evidence
offered in support of the coupling of protein motions to catalysis
has been criticized.86 Our model to rationalize oxydianion
activation of the reactions catalyzed by TIM, OMPDC and
GPDH emphasizes the large barrier to the conformational
changes, which convert the inactive open enzyme to the active
closed form: a part of this barrier represents the requirement for
organization of the catalytic side chains at a caged active site
complex. We do not exclude the possibility that enzyme−dianion
interactions are first utilized to lock the Michaelis complex in the
active conformation EC, and that this is followed by coupled
motions of the protein and substrate on proceeding to the
transition state. However, this added layer of complexity is not
required to rationalize our experimental data. An examination of
Figure 6 and related structures for enzyme−ligand complexes
emphasize the enormity of the possible stabilizing interactions
between enzymes and transition states. We suggest that the
formal contribution to catalysis (if any) of coupling protein and
reaction coordinate motions is of incidental importance
compared to the large transition state stabilization obtained
from strong protein−ligand interactions.
(10) Amyes, T. L.; Richard, J. P.; Tait, J. J. J. Am. Chem. Soc. 2005, 127,
15708−15709.
(11) Go, M. K.; Amyes, T. L.; Richard, J. P. Biochemistry 2009, 48,
5769−5778.
(12) Amyes, T. L.; Richard, J. P. Biochemistry 2007, 46, 5841−5854.
(13) Richard, J. P.; Zhai, X.; Malabanan, M. M. Bioorg. Chem. 2014, 57,
206−212.
(14) Goryanova, B.; Amyes, T. L.; Gerlt, J. A.; Richard, J. P. J. Am.
Chem. Soc. 2011, 133, 6545−6548.
(15) Toth, K.; Amyes, T. L.; Wood, B. M.; Chan, K. K.; Gerlt, J. A.;
Richard, J. P. Biochemistry 2009, 48, 8006−8013.
(16) Tsang, W.-Y.; Amyes, T. L.; Richard, J. P. Biochemistry 2008, 47,
4575−4582.
(17) Ray, W. J., Jr.; Long, J. W.; Owens, J. D. Biochemistry 1976, 15,
4006−4017.
(18) Auerbach, G.; Huber, R.; Grattinger, M.; Zaiss, K.; Schurig, H.;
̈
Jaenicke, R.; Jacob, U. Structure 1997, 5, 1475−1483.
(19) Tadwal, V. S.; Sundararaman, L.; Manimekalai, M. S. S.; Hunke,
C.; Grueber, G. J. Struct. Biol. 2012, 180, 509−518.
(20) Yamaguchi, H.; Miwa, Y.; Kasa, M.; Kitano, K.; Amano, M.;
Kaibuchi, K.; Hakoshima, T. J. Biochem. 2006, 140, 305−311.
(21) Li, G.; Liang, Z. Biochem. J. 2001, 355, 681−689.
(22) Chan, K.; Fedorov, A. A.; Fedorov, E. V.; Almo, S. C.; Gerlt, J. A.
Biochemistry 2008, 47, 9608−9617.
(23) Denesyuk, A. I.; Denessiouk, K. A.; Korpela, T.; Johnson, M. S.
Biochim. Biophys. Acta 2003, 1647, 234−238.
(24) Amyes, T. L.; Richard, J. P. Biochemistry 2013, 52, 2021−2035.
(25) Malabanan, M. M.; Amyes, T. L.; Richard, J. P. Curr. Opin. Struct.
Biol. 2010, 20, 702−710.
(26) Morrow, J. R.; Amyes, T. L.; Richard, J. P. Acc. Chem. Res. 2008,
41, 539−548.
(27) Jencks, W. P. Proc. Nat. Acad. Sci. U. S. A. 1981, 78, 4046−4050.
(28) Thomas, J. A.; Koshland, D. E., Jr. J. Am. Chem. Soc. 1960, 82,
3329−3333.
(29) Koshland, D. E., Jr. Proc. Natl. Acad. Sci. U. S. A. 1958, 44, 98−104.
(30) McMillan, A. W.; Lopez, M. S.; Zhu, M.; Morse, B. C.; Yeo, I.-C.;
Amos, J.; Hull, K.; Romo, D.; Glasner, M. E. Biochemistry 2014, 53,
4434−4444.
(31) Nagar, M.; Narmandakh, A.; Khalak, Y.; Bearne, S. L. Biochemistry
2011, 50, 8846−8852.
(32) Torres, R.; Lan, B.; Latif, Y.; Chim, N.; Goulding, C. W. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 2014, 70, 1074−1085.
(33) Axe, J. M.; Boehr, D. D. J. Mol. Biol. 2013, 425, 1527−1545.
(34) Porter, C. M.; Miller, B. G. Bioorg. Chem. 2012, 43, 44−50.
(35) Johnson, T. A.; Holyoak, T. Biochemistry 2012, 51, 9547−9559.
(36) Carpenter, R. A.; Xiong, J.; Robbins, J. M.; Ellis, H. R. Biochemistry
2011, 50, 6469−6477.
(37) Wood, B. M.; Chan, K. K.; Amyes, T. L.; Richard, J. P.; Gerlt, J. A.
Biochemistry 2009, 48, 5510−5517.
(38) Bergemeyer, H. U.; Haid, E.; Nelboeck-Hochstetter, M. US
Patent US3662037 A,1972.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge the National Institutes of Health Grant
GM39754 for generous support of this work. We thank Prof.
Steve Withers for the suggestion to examine a fluorophosphate
dianion activator.
1381
J. Am. Chem. Soc. 2015, 137, 1372−1382