that the reactivity with probe 5 correlates with aldolase reactivity
for a variety of catalysts suggests that it might be useful for high-
throughput screening of aldolases under aqueous conditions.14
Applications of this screening method to discover aldolases from
combinatorial libraries of peptide dendrimers15 will be reported in
due course.
This work was supported by the University of Berne, the Swiss
National Science Foundation, the Marie Curie Training Network
IBAAC, and the COST Action D25.
Notes and references
1 T. D. Machajewski and C.-H. Wong, Angew. Chem., Int. Ed., 2000, 39,
1352–1374.
2 (a) J. Wagner, R. A. Lerner and C. F. Barbas, III, Science, 1995, 270,
1797–1800; (b) A. Heine, G. F. Zhong and C. F. Barbas, III, Science,
1997, 278, 2085–2092.
3 (a) F. Tanaka and C. F. Barbas, III, Chem. Commun., 2001, 8, 769–770;
(b) H. Shulman, C. Makarov, A. K. Ogawa, F. Romesberg and
E. Keinan, J. Am. Chem. Soc., 2000, 122, 10743–10753; (c) F. Tanaka,
R. Fuller and C. F. Barbas, III, Biochemistry, 2005, 44, 7583–7592.
4 (a) Z. G. Hajos and D. R. Parish, J. Org. Chem., 1973, 38, 3239–3243;
(b) Z. G. Hajos and D. R. Parrish, J. Org. Chem., 1974, 39, 1615–1621;
(c) U. Eder, G. Sauer and R. Wiecher, Angew. Chem., Int. Ed. Engl.,
1971, 10, 496–497.
Fig. 3 Titration of 25 mL 10 mM Zn-Pro2(aq) (acidified to pH y2 with
1 N HCl) with 20 mL aliquots of 1 N NaOH to pH y12.
5 (a) B. List, R. A. Lerner and C. F. Barbas, III, J. Am. Chem. Soc., 2000,
122, 2395; (b) A. B. Northrup and D. W. C. MacMillan, J. Am. Chem.
Soc., 2002, 124, 6798–6799; (c) A. Bøgevig, N. Kumaragurubaran and
K. A. Jørgensen, Chem. Commun., 2002, 6, 620–621; (d) J. Kofoed,
J. Nielsen and J.-L. Reymond, Bioorg. Med. Chem. Lett., 2003, 13,
2445–2447; (e) P. Krattiger, R. Kovasy, J. D. Revell, S. Ivan and
H. Wennemers, Org. Lett., 2005, 7, 1101–1103; (f) D. Enders and
C. Grondal, Angew. Chem., Int. Ed., 2005, 44, 1210–1212; (g)
P. Dziedzic, W. B. Zou, J. Hafren and A. Cordova, Org. Biomol.
Chem., 2006, 4, 38–40; (h) A. B. Northrup and D. W. C. MacMillan,
Science, 2004, 305, 1752–1755; (i) For a recent short review on
asymmetric organocatalysis see: J. Seayad and B. List, Org. Biomol.
Chem., 2005, 3, 719–724.
6 (a) T. Darbre and M. Machuqueiro, Chem. Commun., 2003, 1090–1091;
(b) R. Fernandez-Lopez, J. Kofoed, M. Machuqueiro and T. Darbre,
Eur. J. Org. Chem., 2005, 24, 5268–5276.
7 (a) J. Kofoed, M. Machuqueiro, J.-L. Reymond and T. Darbre, Chem.
Commun., 2004, 1540–1541; (b) J. Kofoed, J.-L. Reymond and
T. Darbre, Org. Biomol. Chem., 2005, 3, 1850–1855.
8 A. Ricardo, M. A. Carrigan, A. N. Olcott and S. A. Benner, Science,
2004, 303, 196.
9 (a) C. Y. Lai, C. Chen and O. Tsolas, Arch. Biochem. Biophys., 1967,
121, 790–797; (b) C. Y. Lai and T. Oshima, Arch. Biochem. Biophys.,
1971, 144, 363–374; (c) J. Jai, U. Scho¨rken, Y. Lindqvist, G. A. Sprenger
and G. Schneider, Protein Sci., 1997, 6, 119–124.
Scheme 3 Mechanisms of zinc-proline catalysis.
10 This is, to the best of our knowledge, the first time the proposed
covalent iminium intermediate of proline and acetone has been trapped
and identified.
precipitation of Zn(OH)2 above pH 9, implying that the conjugate
base Zn(OH)(L-Pro)2 is not available as a general base for
deprotonating DHA. On the other hand the pH curve indicates
that proline is readily decomplexed from zinc upon protonation
from pH 8 to pH 6 (Fig. 3). We propose that zinc-proline catalysis
involves coordination of the carbonyl oxygen to the acidic metal
center, followed either by hemi-aminal, iminium and enamine
formation with acetone, or deprotonation of the a-CH of DHA
and probe 5 by the secondary amine to form a zinc-enolate
(Scheme 3). Coordination of the aldehyde to the metal center is not
necessary in kinetic terms since enamine formation is sufficient to
explain catalysis,11 but might explain why the reaction of acetone
with 1 is enantioselective for (S)-2 with zinc-proline but not at all
with only proline in water.
11 J.-L. Reymond and Y. Chen, J. Org. Chem., 1995, 60, 6970–6979.
12 (a) G. Klein and J.-L. Reymond, Bioorg. Med. Chem. Lett., 1998, 8,
1113; (b) G. Klein and J.-L. Reymond, Helv. Chim. Acta, 1999, 82, 400;
(c) N. Jourdain, R. Pe´rez-Carlo´n and J.-L. Reymond, Tetrahedron Lett.,
1998, 39, 9415–9418; (d) R. Pe´rez Carlo´n, N. Jourdain and
J.-L. Reymond, Chem.-Eur. J., 2000, 6, 4154–4162; (e) F. Badalassi,
G. Klein, P. Crotti and J.-L. Reymond, Eur. J. Org. Chem., 2004,
2557–2566; (f) R. Sicard, L. S. Chen, A. J. Marsaioli and J.-L. Reymond,
Adv. Synth. Catal., 2005, 347, 1041–1050.
13 T. Hoffmann, G. Zhong, B. List, D. Shabat, J. Anderson,
S. Gramatikova, R. A. Lerner and Carlos F. Barbas, III, J. Am.
Chem. Soc., 1998, 120, 2768–2779.
14 J.-P. Goddard and J.-L. Reymond, Trends Biotechnol., 2004, 22,
363–370.
15 (a) A. Esposito, E. Delort, D. Lagnoux, F. Djojo and J.-L. Reymond,
Angew. Chem., Int. Ed., 2003, 42, 1381–1383; (b) A. Clouet, T. Darbre
and J.-L. Reymond, Angew. Chem., Int. Ed., 2004, 43, 4612–4615; (c)
J. Kofoed and J.-L. Reymond, Curr. Opin. Chem. Biol., 2005, 9,
656–664.
The fluorogenic probe 5 reported here offers a simple means for
measuring catalysis of a-carbon deprotonation, and provides a
useful high-throughput screening assay for this process. The fact
1484 | Chem. Commun., 2006, 1482–1484
This journal is ß The Royal Society of Chemistry 2006