Journal of the American Chemical Society
Page 4 of 5
Based on several experimental findings (Fig. 3), it appears
(BK20150688), and program for Changjiang Scholars and
1
2
3
4
5
6
7
8
that in catalytic enantioselective processes where sequential
chirality-transfer steps are involved, the highest level of en-
antio-induction will most likely take place in those cases
where the catalyst does not “miss/skip” an opportunity to
transfer chiral information. One way to “lose” or “skip” an
opportunity for chirality-transfer is when one or more sym-
metrical intermediates are formed along the pathway (see
Fig. 3A & 3C). Naturally, symmetrical (i.e., prochiral) inter-
mediates can be desymmetrized using chiral catalysts, how-
ever, the level of enantio-induction in these desymmetriza-
tions must be very high which is often difficult to achieve. In
particular, organocatalytic asymmetric versions of the
Claisen rearrangement are challenging and there are only a
few highly enantioselective examples in the literature.10
Innovative Research Team in University (IRT1193). L.K. grate-
fully acknowledges the generous financial support of Rice
University, National Institutes of Health (R01 GM-114609-01),
National Science Foundation (CAREER:SusChEM CHE-
1455335), the Robert A. Welch Foundation (Grant C-1764),
ACS-PRF (Grant 51707-DNI1), Amgen (2014 Young Investiga-
tors’ Award for LK) and Biotage (2015 Young Principle Inves-
tigator Award) that are greatly appreciated.
9
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1) (a) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.;
Garner, J.; Breuning, M. Angew Chem., Int Ed 2005, 44, 5384. (b) Wolf,
C. In Dynamic Stereochemistry of Chiral Compounds: Principles and
Applications; RSC: 2007, Ch. 3, 29. (c) Bringmann, G.; Gulder, T.;
Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563. (d) Zask, A.;
Murphy, J.; Ellestad, G. A. Chirality 2013, 25, 265.
(2) (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
(b) Kocovsky, P.; Vyskocil, S.; Smrcina, M. Chem. Rev. 2003, 103, 3213.
(c) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric
Catalysis; Springer: New York, 2004. (d) Akiyama, T. Chem. Rev. 2007,
107, 5744. (e) Blaser, H.-U.; Federsel, H.-J. Asymmetric Catalysis On
Industrial Scale: Challenges, Approaches, And Solutions, 2nd Edition;
Wiley-VCH, 2010. (f) Corey, E. J.; Kürti, L. Enantioselective Chemical
Synthesis: Methods, Logic and Practice; Direct Book Publishing: Dallas,
2010. (g) Ojima, I. Catalytic Asymmetric Synthesis, 3rd Edition; Wiley,
2010. (h) Busacca, C. A.; Fandrick, D. R.; Song, J. J.; Senanayake, C. H.
Adv. Synth. Catal. 2011, 353, 1825. (i) Magano, J.; Dunetz, J. R. Chem.
Rev. 2011, 111, 2177. (j) Zhou, Q.-L. Privileged Chiral Ligands and
Catalysts; Wiley-VCH: Weinheim, 2011.
(3) (a) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew
Chem., Int Ed 2009, 48, 6398. (b) LaPlante, S. R.; Edwards, P. J.; Fader,
L. D.; Jakalian, A.; Hucke, O. ChemMedChem 2011, 6, 505. (c) LaPlante,
S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.; Kemper,
R.; Miller, S. P. F.; Edwards, P. J. J Med Chem 2011, 54, 7005.
(4) (a) Wallace, T. W. Org. Biomol. Chem. 2006, 4, 3197. (b)
Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem Soc Rev 2009, 38,
3193. (c) Bencivenni, G. Synlett 2015, 26, 1915. (d) Ma, G.; Sibi, M. P.
Chem. - Eur. J. 2015, 21, 11644. (e) Wencel-Delord, J.; Panossian, A.;
Leroux, F. R.; Colobert, F. Chem Soc Rev 2015, 44, 3418. (f) Loxq, P.;
Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Coord Chem Rev 2016,
308, 131.
(5) (a) Bringmann, G.; Breuning, M.; Pfeifer, R.-M.; Schenk, W. A.;
Kamikawa, K.; Uemura, M. J Organomet Chem 2002, 661, 31. (b)
Tanaka, K. Chem.--Asian J. 2009, 4, 508. (c) Gustafson, J. L.; Lim, D.;
Miller, S. J. Science 2010, 328, 1251. (d) Shen, X.; Jones, G. O.; Watson,
D. A.; Bhayana, B.; Buchwald, S. L. J Am Chem Soc 2010, 132, 11278.
(e) Cozzi, P. G.; Emer, E.; Gualandi, A. Angew Chem., Int Ed 2011, 50,
3847. (f) Guo, F.; Konkol, L. C.; Thomson, R. J. J Am Chem Soc 2011,
133, 18. (g) De, C. K.; Pesciaioli, F.; List, B. Angew. Chem., Int. Ed.
2013, 52, 9293. (h) Li, G.-Q.; Gao, H.; Keene, C.; Devonas, M.; Ess, D.
H.; Kürti, L. J. Am. Chem. Soc. 2013, 135, 7414. (i) Mori, K.; Ichikawa,
Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am.
Chem. Soc. 2013, 135, 3964. (j) Link, A.; Sparr, C. Angew. Chem., Int.
Ed. 2014, 53, 5458. (k) Chen, Y.-H.; Cheng, D.-J.; Zhang, J.; Wang, Y.;
Liu, X.-Y.; Tan, B. J. Am. Chem. Soc. 2015, 137, 15062.
(6) (a) Gao, H.; Ess, D. H.; Yousufuddin, M.; Kürti, L. J. Am. Chem. Soc.
2013, 135, 7086. (b) Gao, H.; Xu, Q.-L.; Keene, C.; Yousufuddin, M.;
Ess, D. H.; Kürti, L. Angew. Chem., Int. Ed. 2016, 55, 566.
(7) Intriguingly, when the coupling between 2a and 6a to form biaryl 9a
was conducted in the presence of catalyst 7c ( 10 mol%) and 1 equivalent
of MeOH (in DCE as the solvent), no detrimental impact on either the
isolated yield (97%) or the enantiomeric excess (86% ee) was observed.
However, when 20 equivalents of MeOH were added, the reaction slowed
down dramatically while the isolated yield and ee also dropped to 35%
and 62%, respectively (at 50% conversion).
In light of the enantio-induction levels for biaryls 9ea
(96% ee) and 9eg (21% ee), we can make a convincing mech-
anistic case for the involvement of sequential aminal-
formation/[3,3]-rearrangement. Figure 4 clearly shows that if
a direct 1,4-addition was operational, the influence of the
highlighted extra methyl group could not account for the
dramatic loss of enantioselectivity.
1,4-
addi-
tion
X
Me
Me
O
TsHN
Me
HO
HO
[3,3]
O
O
H
HO
Me
O
H
Me
O
Me
Me
TsHN
Me
TsN
OH
Me
centrally chiral
intermediate
(21% ee)
pseudo-symmetrical
aminal intermediate
direct 1,4-addition
Figure 4. The case is made for the aminal-formation/[3,3]-
rearrangement sequence as opposed to a 1,4-direct addition.
In conclusion, we have successfully developed a practical
organocatalytic atroposelective synthesis of non-C2-
symmetrical BINOL derivatives starting from readily availa-
ble hydroxyarenes and iminoquinones. The nearly two dozen
axially chiral and structurally diverse functionalized biaryl
products represent new chemical space and expected to find
broad utility in asymmetric catalysis, drug discovery and
materials science.
ASSOCIATED CONTENT
Supporting Information
Complete experimental procedures and characterization data
including 1H and 13C NMR spectra and chiral HPLC traces.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Financial support from National Natural Science Foundation
of China (grants 81373303, 81473080, 81573299 and 21502230)
is gratefully acknowledged. This project was also supported
by the Jiangsu Province Natural Science Foundation
(8) Li, G.; Fronczek, F. R.; Antilla, J. C. J. Am. Chem. Soc. 2008, 130,
12216.
ACS Paragon Plus Environment