Journal of the American Chemical Society
Communication
ambient conditions, as only the (Z)-isomer is present in the
mechanically interlocked molecule. This synthetic protocol
serves as a proof-of-concept demonstrating that olefin metathesis
is able to proceed in the presence of persistent organic radical
cations and can be utilized in the synthesis of increasingly
elaborate mechanically interlocked compounds.
(7) (a) Iwamoto, H.; Itoh, K.; Nagamiya, H.; Fukazawa, Y. Tetrahedron
Lett. 2003, 44, 5773. (b) Badjic,
Guidry, E. N.; Orenes, R.; Stoddart, J. F. Angew. Chem., Int. Ed. 2004, 43,
́
J. D.; Cantrill, S. J.; Grubbs, R. H.;
3
2
273. (c) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature
003, 424, 174. (d) Lewandowski, B.; et al. Science 2013, 339, 189.
(
e) Guidry, E. N.; Cantrill, S. J.; Stoddart, J. F.; Grubbs, R. H. Org. Lett.
2
005, 7, 2129. (f) Zhu, X.-Z.; Chen, C.-F. J. Am. Chem. Soc. 2005, 127,
1
3158. (g) Clark, P. G.; Guidry, E. N.; Chan, W. Y.; Steinmetz, W. E.;
ASSOCIATED CONTENT
Grubbs, R. H. J. Am. Chem. Soc. 2010, 132, 3405. (h) Jiang, Y.; Zhu, X.-
Z.; Chen, C.-F. Chem.-Eur. J. 2010, 16, 14285. (i) Dasgupta, S.; Wu, J.
Org. Biomol. Chem. 2011, 9, 3504.
■
*
S
Supporting Information
(
8) (a) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.; Cowley,
A. R. J. Am. Chem. Soc. 2004, 126, 15364. (b) Ng, K.-Y.; Cowley, A. R.;
Beer, P. D. Chem. Commun. 2006, 3676. (c) Evans, N. H.; Serpell, C. J.;
Beer, P. D. Angew. Chem., Int. Ed. 2011, 50, 2507. (d) Evans, N. H.;
Serpell, C. J.; Beer, P. D. Chem.-Eur. J. 2011, 17, 7734. (e) Evans, N. H.;
Allinson, E. S. H.; Lankshear, M. D.; Ng, K.-Y.; Cowley, A. R.; Serpell, C.
Experimental procedures and spectral data ( H and 13C
NOESY and DOSY spectra of 4·6PF (PDF)
1
6
́
J.; Santos, S. M.; Costa, P. J.; Felix, V.; Beer, P. D. RSC Adv. 2011, 1, 995.
AUTHOR INFORMATION
(f) Evans, N. H.; Rahman, H.; Leontiev, A. V.; Greenham, N. D.;
Orlowski, G. A.; Zeng, Q.; Jacobs, R. M. J.; Serpell, C. J.; Kilah, N. L.;
Davis, J. J.; Beer, P. D. Chem. Sci. 2012, 3, 1080. (g) de Juan, A.; Pouillon,
Y.; Ruiz-Gonzal
.; Perez, E. M. Angew. Chem., Int. Ed. 2014, 53, 5394. (h) Mercurio, J.
M.; Caballero, A.; Cookson, J.; Beer, P. D. RSC Adv. 2015, 5, 9298.
9) Trabolsi, A.; Khashab, N.; Fahrenbach, A. C.; Friedman, D.; Colvin,
́
ez, L.; Torres-Pardo, A.; Casado, S.; Martín, N.; Rubio,
Notes
A
́
́
The authors declare no competing financial interest.
(
M. T.; Cotí, K. K.; Benítez, D.; Tkatchouk, E.; Olsen, J.-C.; Belowich, M.
E.; Carmielli, R.; Khatib, H. A.; Goddard, W. A., III; Wasielewski, M. R.;
Stoddart, J. F. Nat. Chem. 2010, 2, 42.
(10) (a) Odell, B.; Reddington, M. V.; Slawin, A. M. Z.; Spencer, N.;
Stoddart, J. F.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1547.
ACKNOWLEDGMENTS
■
This research is part of the Joint Center of Excellence in
Integrated Nano-Systems (JCIN) at the King Abdulaziz City of
Science and Technology (KACST) and Northwestern Uni-
versity (NU). The authors thank KACST and NU for their
continued support of this research. I.C.G.-H. thanks the National
Defense Science and Engineering Graduate Fellowship
(b) Barnes, J. C.; Juríce
J. Org. Chem. 2013, 78, 11962.
11) (a) Li, H.; Fahrenbach, A. C.; Dey, S. K.; Basu, S.; Trabolsi, A.;
Zhu, Z.; Botros, Y. Y.; Stoddart, J. F. Angew. Chem., Int. Ed. 2010, 49,
260. (b) Li, H.; Zhu, Z.; Fahrenbach, A. C.; Savoie, B. M.; Ke, C.;
̌
k, M.; Vermeulen, N. A.; Dale, E. J.; Stoddart, J. F.
(
(
FA9550-11-C-0028) from the U.S. Department of Defense.
8
E.J.D. acknowledges the award of a Graduate Research
Fellowship from the National Science Foundation (NSF) and
a Ryan Fellowship from the NU International Institute for
Nanotechnology (IIN). A.K.B. thanks Fulbright New Zealand
for a Fulbright Graduate Award and the New Zealand Federation
of Graduate Women for a Postgraduate Fellowship Award.
Barnes, J. C.; Lei, J.; Zhao, Y.-L.; Lilley, L. M.; Marks, T. J.; Ratner, M. A.;
Stoddart, J. F. J. Am. Chem. Soc. 2013, 135, 456.
(
(
12) Barnes, J. C.; et al. Science 2013, 339, 429.
13) (a) Cheng, C.; McGonigal, P. R.; Liu, W.-G.; Li, H.; Vermeulen,
N. A.; Ke, C.; Frasconi, M.; Stern, C. L.; Goddard, W. A., III; Stoddart, J.
F. J. Am. Chem. Soc. 2014, 136, 14702. (b) Cheng, C.; McGonigal, P. R.;
Schneebeli, S. T.; Li, H.; Vermeulen, N. A.; Ke, C.; Stoddart, J. F. Nat.
Nanotechnol. 2015, 10, 547.
REFERENCES
1) Monfette, S.; Fogg, D. E. Chem. Rev. 2009, 109, 3783.
2) Gil-Ramírez, G.; Leigh, D. A.; Stephens, A. J. Angew. Chem., Int. Ed.
015, 54, 6110.
3) (a) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 5426.
b) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 7324.
4) (a) Mohr, B.; Weck, M.; Sauvage, J.-P.; Grubbs, R. H. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1308. (b) Weck, M.; Mohr, B.; Sauvage, J.-
P.; Grubbs, R. H. J. Org. Chem. 1999, 64, 5463. (c) Dietrich-Buchecker,
C.; Rapenne, G.; Sauvage, J.-P. Coord. Chem. Rev. 1999, 615. (d) Arico,
F.; Mobian, P.; Kern, J.-M.; Sauvage, J.-P. Org. Lett. 2003, 5, 1887.
e) Mobian, P.; Kern, J.-M.; Sauvage, J.-P. J. Am. Chem. Soc. 2003, 125,
016. (f) Mobian, P.; Kern, J.-M.; Sauvage, J.-P. Inorg. Chem. 2003, 42,
633. (g) Hamann, C.; Kern, J.-M.; Sauvage, J.-P. Inorg. Chem. 2003, 42,
877. (h) Gupta, M.; Kang, S.; Mayer, M. F. Tetrahedron Lett. 2008, 49,
946. (i) Guo, J.; Mayers, P. C.; Breault, G. A.; Hunter, C. A. Nat. Chem.
010, 2, 218. (j) Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B.
■
(
14) Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2005, 127, 17160.
15) (a) Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757. (b) Michaelis,
(
(
(
2
(
(
L.; Hill, E. S. J. Am. Chem. Soc. 1933, 55, 1481. (c) Michaelis, L. Chem.
Rev. 1935, 16, 243. (d) Kosower, E. M.; Cotter, J. L. J. Am. Chem. Soc.
1
964, 86, 5524. (e) Blandamer, M. J.; Brivati, J. A.; Fox, M. F.; Symons,
M. C. R.; Verma, G. S. P. Trans. Faraday Soc. 1967, 63, 1850.
f) Kosower, E. M.; Hajdu, J. J. Am. Chem. Soc. 1971, 93, 2534. (g) Evans,
A. G.; Evans, J. C.; Baker, M. W. J. Am. Chem. Soc. 1977, 99, 5882.
h) Evans, A. G.; Evans, J. C.; Baker, M. W. J. Chem. Soc., Perkin Trans. 2
(
(
́
(
1
977, 1787. (i) Geuder, W.; Hu
̈
nig, S.; Suchy, A. Tetrahedron 1986, 42,
(
1
665. (j) Quintela, P. A.; Diaz, A.; Kaifer, A. E. Langmuir 1988, 4, 663.
2
8
1
2
2
(
1
k) Monk, P. M. S.; Hodgkinson, N. M.; Partridge, R. D. Dyes Pigm.
999, 43, 241. (l) Jeon, W. S.; Kim, H.-J.; Lee, C.; Kim, K. Chem.
Commun. 2002, 1828. (m) Spruell, J. M. Pure Appl. Chem. 2010, 82,
2
2
281. (n) Geraskina, M. R.; Buck, A. T.; Winter, A. H. J. Org. Chem.
014, 79, 7723.
Chem. Commun. 2012, 48, 5826. (k) Wojtecki, R. J.; Wu, Q.; Johnson, J.
C.; Ray, D. G.; Korley, L. T. J.; Rowan, S. J. Chem. Sci. 2013, 4, 4440.
(16) At relatively slow scan rates (<100 mV/s), the reduced inclusion
and oxidize to the non-interlocked components (see Figure S22). At
relatively rapid scan rates (>1500 mV/s), the trisradical inclusion
complex can be observed for both samples. The difference in peak
intensity between the two systems can be explained by the difference in
the relative binding constants between the mixture of two components
and the [2]catenane.
(
5) (a) Hamilton, D. G.; Feeder, N.; Teat, S. J.; Sanders, J. K. M. New J.
Chem. 1998, 22, 1019. (b) Li, S.; Liu, M.; Zheng, B.; Zhu, K.; Wang, F.;
Li, N.; Zhao, X.-L.; Huang, F. Org. Lett. 2009, 11, 3350. (c) Jurícek, M.;
Barnes, J. C.; Strutt, N. L.; Vermeulen, N. A.; Ghooray, K. C.; Dale, E. J.;
McGonigal, P. R.; Blackburn, A. K.; Avestro, A.-J.; Stoddart, J. F. Chem.
Sci. 2014, 5, 2724.
̌
(
6) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem. Soc. 1999, 121,
1
599.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX