exhaust emissions may be underestimated. Similarly, the upper
limit lifetime of cyclohexa-1,3-diene in bottled samples of
polluted urban air initially containing 100 ppb NO2 is ca. 2.5
d. Consequently, analysis of such samples following storage
will underestimate its ambient concentration.
References
1
A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T.
Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T.
Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor and
P. Zimmerman, J. Geophys. Res., 1995, 100, 8873.
C. A. Jemma, P. A. Shore and K. A. Widdicombe, J. Chromatogr.
Sci., 1995, 33, 34.
The observation of benzene as a product of the photolysis of
cyclohexa-1,3-diene/CH3ONO/NO/O2 mixtures confirms that
the OH-initiated oxidation of cyclohexa-1,3-diene possesses a
minor, but significant H atom abstraction channel forming
cyclohexadienyl radicals. The observed formation of benzene
in the NO2-initiated studies indicates that the reaction of NO2
with cyclohexa-1,3-diene also possesses a minor H atom ab-
straction channel. Assuming the reaction of cyclohexadienyl
radicals with O2 produces benzene as the sole organic product,
the results are consistent with abstraction channel branching
ratios of (8.1 ꢀ 0.2)% and (1.5 ꢀ 0.4)% for the OH and NO2
reactions, respectively. The dependence of the benzene yield on
[NO2]/[O2] in the NO2-initiated experiments could be inter-
preted in terms of a competitive reaction of cyclohexadienyl
radicals with NO2, which partially forms benzene (27 ꢀ 7)%
and possesses a rate coefficient greater than the O2 reaction by
a factor of (1.8 ꢀ 0.5) ꢁ 105.
2
3
4
J. P. Shi and R. M. Harrison, Atmos. Environ., 1997, 31, 3857.
D. Smith, P. Cheng and P. Spanel, Rapid Commun., Mass
Spectrom., 2002, 16, 1124.
5
P. Ciccioli, A. Cecinato, E. Brancaleoni, A. Brachetti, M. Frattoni
and R. Sparapani, Composition and distribution of polar and non-
polar VOCs in urban, rural, forest and remote areas. Proceedings
of the 6th European Symposium on the Physico-chemical Behaviour
of Atmospheric Pollutants, Varese, 18–22 October 1993, pp.
549–568, ed. G. Angeletti and G. Restelli, European Commission,
Report EUR 15609/1 EN, ISBN 92-826-7922-5, 1994.
J. G. Calvert, R. Atkinson, J. A. Kerr, S. Madronich, G. K.
Moortgat, T. J. Wallington and G. Yarwood, The mechanisms of
atmospheric oxidation of alkenes, Oxford University Press, New
York, ISBN 0-19-513177-0, 2000.
6
7
8
9
R. Atkinson, S. M. Aschmann, A. M. Winer and J. N. Pitts, Jr.,
Int. J. Chem. Kinet., 1984, 16, 697.
T. Ohta, H. Nagura and S. Suzuki, Int. J. Chem. Kinet., 1986, 18,
1.
E. C. Tuazon and R. Atkinson, Int. J. Chem. Kinet., 1990, 22,
1221.
The results of the NO2-initiated study in the absence of O2
are consistent with dominant sequential addition of two NO2
molecules to form one or more dinitrocyclohexene isomers. In
the presence of O2, the results suggest that formation of
nitrocyclohexenyl peroxy radicals occurs. On the basis of
kinetics considerations, and the observed high yield of HOX
radicals in the presence of NO, it is postulated that the
chemistry proceeds predominantly via formation of the 4-
nitrocyclohex-2-enylperoxy isomer, which undergoes conven-
tional peroxy radical reactions (i.e. with NO, NO2 and peroxy
radicals).
When NO is present, the NO2-initiated oxidation leads to
NO-to-NO2 conversion, and the formation of HOX radicals in
significant yield. The present results are consistent with an
HOX yield of (0.79 ꢀ 0.05) at typical urban levels of NOX, and
therefore confirm the inferred generation of OH, as reported by
Atkinson et al.7 The present work thus also supports the
general features of the mechanism postulated by Shi and
Harrison3 for cyclohexa-1,3-diene and 1-methylcyclopenta-
1,3-diene, and the potential of conjugated diene/NO2 reactions
to promote NO to NO2 oxidation in samples of diluted vehicle
exhaust and fuel vapour. However, it is not possible to assess
the relative importance of these reactions for the generation of
HOX radicals in the polluted urban environment without
further quantitative measurements of the ambient concentra-
tions of conjugated dienes.
The observation of HCOOH as a product in the NO2/
cyclohexa-1,3-diene/NO/NO2 experiments provides evidence
for significant formation of stabilised C6 a-hydroxyperoxy
radicals from the OH-initiated chemistry, and their subsequent
reaction with NO. On the basis of the NO concentration
dependence of the HCOOH yield, an estimate of ca. 500–
1000 sꢂ1 is made for the decomposition rate of the stabilised
a-hydroxyperoxy radical, indicating that decomposition and
reaction with NO occur equally at an NO concentration of ca.
2.5–5 ppm. Consequently, formation of HCOOH (and possibly
other acids) from the oxidation of cyclohexa-1,3-diene by this
mechanism can only contribute under highly polluted atmo-
spheric conditions (i.e. [NO] Z 1 ppm), but could be a
significant source of carboxylic acids in exhaust samples.
10 R. M. Harrison, J. P. Shi and J. L. Grenfell, Atmos. Environ.,
1998, 32, 2769.
11 M. D. King, C. E. Canosa-Mas and R. P. Wayne, Phys. Chem.
Chem. Phys., 2000, 4, 295.
12 M. E. Jenkin, M. Sørensen, M. D. Hurley and T. J. Wallington, J.
Phys. Chem. A, 2003, 107, 5743.
13 E. C. Tuazon, A. Alvarado, S. M. Aschmann, R. Atkinson and J.
Arey, Environ. Sci. Technol., 1999, 33, 3586.
14 X. Liu, H. E. Jeffries and K. G. Sexton, Atmos. Environ., 1999, 33,
3005.
15 T. Ohta, Bull. Chem. Soc. Jpn., 1984, 57, 960.
16 R. Atkinson, S. M. Aschmann, E. C. Tuazon, J. Arey and B.
Zelinska, Int. J. Chem. Kinet., 1989, 21, 593.
17 S. E. Paulson, R. C. Flagan and J. H. Seinfeld, Int. J. Chem.
Kinet., 1992, 24, 79.
18 A. Miyoshi, S. Hatakeyama and N. Washida, J. Geophys. Res.,
1994, 99, 18779.
19 E. S. C. Kwok, R. Atkinson and J. Arey, Environ. Sci. Technol.,
1995, 29, 2467.
20 L. Ruppert and K.-H. Becker, Atmos. Environ., 2000, 34, 1529.
21 T. Ohta, Int. J. Chem. Kinet., 1984, 16, 1945.
22 H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach and M. D.
Hurley, Int. J. Chem. Kinet., 1986, 18, 1235.
23 T. J. Wallington and S. M. Japar, J. Atmos. Chem., 1989, 9, 399.
24 R. Atkinson, J. Phys. Chem. Ref. Data, 1997, 26(2), 215.
25 J. Peeters, S. Vandenberk, E. Piessens and V. Pultau, Chemo-
sphere, 1999, 38(6), 1189.
26 L. Vereecken and J. Peeters, Chem. Phys. Lett., 2001, 333, 162.
27 R. Atkinson, Int. J. Chem. Kinet., 1997, 29, 99.
28 A. G. Lewin, D. Johnson, A. W. Price and G. Marston, Phys.
Chem. Chem. Phys., 2001, 3, 1253.
29 R. Lesclaux, Combination of peroxyl radicals in the gas phase, in
‘Peroxyl Radicals’, ed. Z. B. Alfassi, John Wiley and Sons, 1997.
30 R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F.
Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe,
Atmos. Chem. Phys., 2004, 4, 1461.
31 P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau, G. D.
Hayman, M. E. Jenkin, G. K. Moortgat and F. Zabel, Atmos.
Environ., 1992, 26A, 1805.
32 M. E. Jenkin, A. A. Boyd and R. Lesclaux, J. Atmos. Chem., 1998,
29, 267.
33 R. Knispel, R. Koch, M. Siese and C. Zetzsch, Ber. Bunsen-Ges.
Phys. Chem., 1990, 94, 1375.
34 C. Zetzsch, R. Koch, B. Bohn, R. Knispel, M. Siese and F. Witte,
Transp. Chem. Transform. Pollut. Troposphere, 1997, 3, 247.
35 J. G. Calvert, R. Atkinson, K.-H. Becker, R. M. Kamens, J. H.
Seinfeld, T. J. Wallington and G. Yarwood, The mechanisms of
atmospheric oxidation of aromatic hydrocarbons, Oxford Univer-
sity Press, New York, ISBN 0-19-514628-X, 2002.
36 H. H. Grotheer, G. Riekert, D. Walter and T. Just, J. Phys.
Chem., 1988, 92, 4028.
Acknowledgements
MEJ acknowledges the UK Natural Environment Research
Council, NERC, for support via a Senior Research Fellowship
(NER/K/S/2000/00870). MPSA thanks the Danish Research
Agency for funding. We thank Dick Chase (Ford) for helpful
discussions.
37 F. L. Nesbitt, W. A. Payne and L. J. Stief, J. Phys. Chem., 1988,
92, 4030.
T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 5
P h y s . C h e m . C h e m . P h y s . , 2 0 0 5 , 7 , 1 1 9 4 – 1 2 0 4
1203