1380
J . Org. Chem. 2001, 66, 1380-1386
C-Glycosid es to F u sed P olycyclic Eth er s. A F or m a l Syn th esis of
(()-Hem ibr evetoxin B
J on D. Rainier,* Shawn P. Allwein, and J ason M. Cox
Department of Chemistry, The University of Arizona, Tucson, Arizona, 85721
rainier@u.arizona.edu
Received October 24, 2000
This paper describes a formal total synthesis of the marine ladder toxin hemibrevetoxin B from
Danishefsky’s dienes. This approach couples the generation of C-glycosides from cyclic enol ethers
with metathesis or acid-mediated annulation reactions. The result is a highly efficient synthesis of
the tetracyclic ring system of hemibrevetoxin B.
In tr od u ction
The marine ladder toxins comprise a family of red tide
toxins possessing highly complex architectures and very
interesting biological properties including neurotoxicity
and antimicrobial activity.1 Members include the breve-
toxins,2 ciguatoxins,3 maitotoxins,4 and gambieric acids,5
among others. Common to these agents is a highly
symmetrical fused polycyclic ether skeleton consisting of
(a) six- to nine-membered trans-fused ether rings;6 (b)
trans-syn-trans relative ring junction stereochemistry
about any ring;6 (c) ether linkages on vicinal ring junction
carbon atoms; (d) hydrogen or methyl substituents at the
ring junctions (see Figure 1). This high degree of sym-
metry has led many,7 including us,8 to believe that
iterative approaches might be the best way to synthesize
these architectures.9
F igu r e 1. Trans-syn-trans-fused polycyclic ethers present in
the marine ladder toxins.
Sch em e 1
Our general strategy to fused polycyclic ether ring
systems couples the synthesis of C-glycosides via cyclic
enol ether oxidations10 and carbon-carbon bond forming
(1) Shimizu, Y. Marine Natural Products; Academic Press: New
York, 1978; Vol. 1.
(2) (a) For the isolation of brevetoxin B, see: Lin, Y. Y.; Risk, M.;
Ray, M. S.; VanEnsen, D.; Clardy, J .; Golik, J .; J ames, J . C.; Nakanishi,
K. J . Am. Chem. Soc. 1981, 103, 6773. (b) For the total synthesis of
brevetoxin B, see: Nicolaou, K. C.; Rutjes, F. P. J . T.; Theodorakis, E.
A.; Tiebes, J .; Sato, M.; Untersteller, E. J . Am. Chem. Soc. 1995, 117,
10252. (c) For the isolation of brevetoxin A, see: Shimizu, Y.; Chou,
H.-N.; Bando, H.; Van Duyne, G.; Clardy, J . C. J . Am. Chem. Soc. 1986,
108, 514. (d) For the total synthesis of brevetoxin A, see: Nicolaou, K.
C.; Yang, Z.; Shi, G.-Q.; Gunzner, J . L.; Agrios, K. A.; Ga¨rtner, P.
Nature 1998, 392, 264.
(3) (a) Yasumoto, T.; Satake, M. J . Toxicology-Toxin Rev. 1996, 15,
91. (b) Scheuer, P. J . Tetrahedron 1994, 50, 3.
(4) (a) Zheng, W.; DeMattei, J . A.; Wu, J .-P.; Duan, J . J .-W.; Cook,
L. R.; Oinuma, H.; Kishi, Y. J . Am. Chem. Soc. 1996, 118, 7946. (b)
Nonomura, T.; Sasaki, M.; Matsumori, N.; Murata, M.; Tachibana, K.;
Yasumoto, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1675.
(5) Nagai, H.; Torigoe, K.; Satake, M.; Murata, M.; Yasumoto, J . J .
Am. Chem. Soc. 1992, 114, 1102.
(6) Isolated examples of cis-fused ring junctions exist in this family
(cf. maitotoxin, see ref 4).
(7) For examples of iterative approaches to fused polyethers, see:
(a) Evans, P. A.; Roseman, J . D.; Garber, L. T. J . Org. Chem. 1996,
61, 4880. (b) Bowman, J . L.; McDonald, F. E. J . Org. Chem. 1998, 63,
3680. (c) Mori, Y. Chem. Eur. J . 1997, 3, 849. (d) Clark, J . S.; Kettle,
J . G. Tetrahedron Lett. 1997, 38, 123.
reactions with enol ether, olefin ring-closing metathesis
(RCM) or acid-mediated annulations (Scheme 1).8 The
result of this sequence is a homologous cyclic enol ether
that is ready for further elaboration.
While certainly pleased with their efficiency and flex-
ibility in model compounds, we were intent on demon-
strating the utility of our approaches to one of the
polyether natural products. With this in mind, we elected
(8) (a) Rainier, J . D.; Allwein, S. P. J . Org. Chem. 1998, 63, 5310.
(b) Rainier, J . D.; Allwein, S. P. Tetrahedron Lett. 1998, 39, 9601.
(9) For a pre-1995 review of synthetic strategies to fused polyether
rings, see: Alvarez, E.; Candenas, M.-L.; Pe´rez, R.; Ravelo, J . L.;
Mart´ın, J . D. Chem. Rev. 1995, 95, 1953.
(10) While dimethyl dioxirane is our reagent of choice for these
oxidations, we have also oxidized enol ethers using (a) NBS, H2O (see
ref 8a); (b) AD-mix (Rainier, J . D.; Allwein, S. P. Unpublished results).
10.1021/jo001514j CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/25/2001