L. Zhao, D. J. Burnell / Tetrahedron Letters 47 (2006) 3291–3294
3293
For 4: mp 71–73 °C, lit.12 73–74 °C; IR (cast): 3380 cmÀ1
;
addition with cyclohexanone must be overcome by the
other considerations with the allylindium reagent,
because the equatorial-addition product was reported
to predominate.7 The inherent tendency for axial attack
is greater for cyclohexenone than for cyclohexanone.1 In
our hands, in the reactions with the cyclohexenones,
allylmagnesium gave highest proportion of the axial-
addition products, whereas in additions of the allyl-
indium reagent and allylbismuth, the proportions of
axial-addition products were less. Indeed, with the
simplest case, 4-tert-butylcyclohex-2-enone, the allyl-
indium reagent returned a 1:1 mixture of the axial-
and equatorial-addition products.
1H NMR: d 1.66 (2H, m), 1.57 (2H, m), 1.39 (4H, m),
1.26–1.35 (5H, m), 0.91 (3H, m), 0.86 (9H, s); 13C NMR: d
70.9 (0), 48.2 (1), 46.9 (2), 37.6 (2), 32.6 (0), 27.8 (3), 22.7
(2), 16.6 (2), 15.0 (3); lit.12 (CDCl3, 80 MHz instrument): d
70.7, 48.1, 46.8, 37.5, 32.4, 27.6, 22.6, 16.4, 14.8.
11. (a) Buckwalter, B. L.; Burfitt, I. R.; Felkin, H.; Joly-
Goudket, M.; Maemura, K.; Salomon, M. F.; Wenkert,
E.; Wovkulich, P. M. J. Am. Chem. Soc. 1978, 100, 6445–
6450; (b) Trost, B. M.; Gunzner, J. L.; Dirat, O.; Rhee,
Y. H. J. Am. Chem. Soc. 2002, 124, 10396–10415.
12. Welch, S. C.; Prakasa Rao, A. S. C.; Lyon, J. T.; Assercq,
J.-M. J. Am. Chem. Soc. 1983, 105, 252–257.
13. Allylindium procedure: Indium metal (0.50 mmol) and allyl
iodide (0.75 mmol) in DMF (2.0 mL) were stirred under
argon for 1 h during which time most of the indium
dissolved giving a grey solution. The enone (0.50 mmol) in
DMF (1.0 mL) was introduced dropwise, and the solution
was stirred at room temperature. Reaction progress was
monitored by TLC. Aqueous workup provided the pro-
duct(s). The ratio of products was determined by NMR.
14. Gynane, M. J. S.; Worrall, I. J. J. J. Organomet. Chem.
1974, 81, 329–334.
Acknowledgements
Support from the Natural Sciences and Engineering
Research Council of Canada and the Killam Trust is
gratefully acknowledged.
15. (a) Makoto, W.; Hidenori, O.; Kinya, A. Tetrahedron
Lett. 1986, 27, 4771–4774; (b) Makoto, W.; Munekazu,
H.; Yoshihiro, K.; Norikazu, M. Bull. Chem. Soc. Jpn.
1997, 70, 2265–2267; (c) Xu, X.; Zha, Z.; Wang, Z. Synlett
2004, 1171–1174.
References and notes
1. Wu, Y.-D.; Houk, K. N.; Florez, J.; Trost, B. M. J. Org.
Chem. 1991, 56, 3656–3664.
16. Allylbismuth procedure:15 The enone (0.6 mmol), allyl
bromide (1.3 mmol), BiCl3 (0.85 mmol), and zinc powder
(1.3 mmol) in THF (10 mL) were heated to reflux under
argon. Reaction progress was monitored by TLC. A solid
was removed by filtration, and the THF was evaporated
under vacuum. Ether was added, and this solution was
washed with 0.5 M HCl, H2O, and saturated NaHCO3.
The solution was dried (MgSO4), and the ether was
evaporated under vacuum. The ratio of products was
determined by NMR.
2. (a) Trost, B. M.; Florez, J.; Jebaratnam, D. J. J. Am.
Chem. Soc. 1987, 109, 613–615; (b) Trost, B. M.; Florez,
J.; Haller, K. J. J. Org. Chem. 1988, 53, 2396–2398.
3. Klemeyer, H. J.; Paquette, L. A. J Org. Chem. 1994, 59,
7924–7927.
4. Lindsay, H. A.; Salisbury, C. L.; Cordes, W.; McIntosh,
M. C. Org. Lett. 2001, 3, 4007–4010.
5. Gajewski, J. J.; Bocian, W.; Harris, N. J.; Olson, L. P.;
Gajewski, J. P. J. Am. Chem. Soc. 1999, 121, 326–334.
6. Araki, S.; Ito, H.; Butsugan, Y. J. Org. Chem. 1988, 53,
1833–1835.
17. For 5: IR (cast): 3348 cmÀ1 1H NMR: d 5.89 (1H, m),
;
7. Reetz, M. T.; Haning, H. J. Organomet. Chem. 1997, 541,
117–120.
8. (a) Chan, T. H.; Yang, Y. J. Am. Chem. Soc. 1999, 21,
3228–3229; (b) Podlech, J.; Maier, T. C. Synthesis 2003,
633–655; (c) Lucas, P.; Gajewski, J. J.; Chan, T. H. Can. J.
Anal. Sci. Spect. 2003, 48, 1–6.
5.10–5.19 (3H, m), 2.33 (1H, dd, J = 13.7, 6.9 Hz), 2.25
(1H, dd, J = 13.7, 8.0 Hz), 2.20 (1H, dt, J = 5.5, 14.0 Hz),
1.99 (2H, m), 1.70–1.89 (3H, m), 1.04 (3H, s), 0.90 (3H, d,
J = 7.1 Hz), 0.865 (3H, d, J = 6.5 Hz), 0.860 (3H, d,
J = 6.5 Hz), 0.68 (3H, s), and other signals unresolved
0.70–1.68; 13C NMR: d 147.1 (0), 134.2 (1), 125.6 (1), 118.7
(2), 71.1 (0), 56.5 (1), 56.4 (1), 54.4 (1), 45.7 (2), 42.7 (0),
40.1 (2), 39.7 (2), 37.7 (0), 36.4 (2), 36.2 (1), 36.0 (1), 34.9
(2), 33.5 (2), 32.6 (2), 32.5 (2), 28.4 (2), 28.2 (1), 24.4 (2),
24.1 (2), 23.0 (3), 22.8 (3), 21.4 (2), 19.2 (3), 18.9 (3), 12.2 (3).
For 6: IR (cast): 3422 cmÀ1; 1H NMR: d 5.85 (1H, m), 5.24
(1H, s), 5.09–5.14 (2H, m), 2.21–2.30 (2H, m), 2.20 (1H, m),
1.97–2.03 (2H, m), 1.80 (1H, m), 1.72 (1H, m), 0.94 (3H, s),
0.90 (3H, d, J = 6.8 Hz), 0.87 (3H, d, J = 6.4 Hz), 0.86 (3H,
d, J = 6.1 Hz), 0.66 (3H, s), and other signals unresolved
0.77–1.68; 13C NMR: d 149.6 (0), 134.3 (1), 124.1 (1),
118.4 (2), 69.3 (0), 56.4 (1), 56.3 (1), 54.5 (1), 47.6 (2), 42.7
(0), 40.1 (2), 39.7 (2), 37.8 (0), 36.4 (2), 36.1 (1), 36.0 (1), 33.5
(2), 32.9 (2), 32.7 (2), 32.2 (2), 28.4 (2), 28.2 (1), 24.5 (2), 24.1
(2), 23.0 (3), 22.8 (3), 21.7 (2), 18.9 (3), 18.1 (3), 12.2 (3).
18. 1,2-Addition of an allylindium reagent to carvone was
reported previously: Kim, H. Y.; Choi, K. I.; Pae, A. N.;
Koh, H. Y.; Choi, J. H.; Cho, Y. S. Synth. Commun. 2003,
33, 1899–1904, but the stereochemistry of the product was
not determined.
9. Paquette, L. A.; Lobben, P. C. J. Org. Chem. 1998, 63,
5604–5616.
10. All NMR spectra were run in CDCl3 on a 500 MHz
instrument.
For 1: IR (neat): 3375 cmÀ1 1H NMR: d 5.90 (1H, m),
;
5.74 (1H, dt, J = 10.2, 1.8 Hz), 5.61 (1H, dt, J = 10.2,
2.2 Hz), 5.10–5.17 (2H, m), 2.34 (1H, dd, J = 7.2,
13.6 Hz), 2.26 (1H, dd, J = 7.5, 13.6 Hz), 1.95 (1H,
complex d, J = 13 Hz), 1.90 (1H, m), 1.76 (1H, m), 1.56
(1H, m), 1.38 (1H, m), 0.88 (9H, s); 13C NMR: d 134.4 (1),
133.9 (1), 130.4 (1), 118.9 (2), 70.8 (0), 46.0 (2), 45.6 (1),
36.2 (2), 33.0 (0), 27.4 (3), 22.4 (2).
1
For 2: IR (neat): 3416 cmÀ1; H NMR: d 5.83–5.89 (2H,
m), 5.68 (1H, dt, J = 10.5, 2.1 Hz), 5.09–5.14 (2H, m), 2.28
(2H, symmetrical m), 1.76–1.80 (2H, m), 1.69 (1H, m),
1.45–1.56 (2H, m), 0.90 (9H, s); 13C NMR: d 134.0 (1),
133.2 (1), 132.5 (1), 118.5 (2), 68.7 (0), 47.3 (2), 46.7 (1),
35.7 (2), 32.7 (0), 27.5 (3), 20.2 (2).
For 3: mp 77–78 °C; IR (cast): 3293 cmÀ1 1H NMR: d
;
1.80 (2H, br d, J = 12.5 Hz), 1.67 (2H, m), 1.47 (2H, m),
1.32–1.39 (4H, m), 1.01–1.11 (3H, m), 0.95 (3H, t,
J = 7.2 Hz), 0.86 (9H, s); 13C NMR: d 72.5 (0), 47.8 (1),
39.1 (2), 39.0 (2), 32.5 (0), 27.9 (3), 24.7 (2), 16.1 (2), 15.0
(3).
19. Scholl, S.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953–956.
1
20. For 7: IR (neat): 3403, 1644 cmÀ1; H NMR: d 5.87 (1H,
m), 5.47 (1H, narrow m), 5.16 (1H, br d, J = 11.0 Hz),
5.13 (1H, br d, J = 18.5 Hz).4.73 (2H, br s), 2.47 (1H, dd,