2974
References
1. Cornell, B. A.; Braach-Maksvytis, V. L. B.; King, L. G.; Osman, P. D. J.; Raguse, B.; Wieczorek, L.; Pace, R. J. Nature
1997, 387, 580; Raguse, B.; Braach-Maksvytis, V.; Cornell, B. A.; King, L. G.; Osman, P. D. J.; Pace, R. J.; Wieczorek, L.
Langmuir 1998, 14, 648; Pace, R. J.; Cornell, B. A.; Braach-Maksvytis, V. L. B.; King, L. G.; Osman, P. D. J.; Raguse, B.;
Wieczorek, L. SPIE Proc. 1998, 3270, 50; Woodhouse, G. E.; King, L. G.; Wieczorek, L.; Cornell, B. A. Faraday Discuss.
1998, 111, 247.
2. Woese, C.; Wheelis, M. L. Proc. Natl. Acad. Sci. USA 1990, 87, 4576; Woese, C. R. Microbiol. Rev. 1987, 51, 221; Woese,
C. R. Sci. Am. 1981, 244, 98.
3. Gräther, O.; Arigoni, D. J. Chem. Soc., Chem. Commun. 1995, 405, and references cited therein; Luzzati, V.; Gambacorta,
A.; DeRosa, M.; Gulik, A. Annu. Rev. Biophys. Biophys. Chem. 1987, 16, 25; Kates, M. In The Biochemistry of Archae
(Archaebacteria); Kates, M.; Kushner, D. J.; Matheson, A. T., Eds.; Elsevier: Amsterdam, 1993; pp. 261.
4. The Achaebacteria: Biochemistry and Biotechnology; Danson, M. J.; Hough, D. W.; Lunt, G. G., Eds.; Portland Press:
Chapel Hill, 1992; Gambacorta, A.; Gliozzi, A.; De Rosa, M. World J. Microbiol. Biotechnol. 1995, 11, 115; De Rosa, M.;
Lanzotti, V.; Nicolaus, B.; Trincone, A.; Gambacorta, A. In Microbiology of Extreme Environments and its Potential for
Biotechnology; Da Costa, M. S.; Duarte, J. C.; Williams, R. A. D., Eds.; Elsevier: London, 1989; pp. 131.
5. Yamauchi, K.; Moriya, A.; Kinoshita, M. Biochim. Biophys. Acta 1989, 1003, 151.
6. Moss, R. A.; Li, J.-M. J. Am. Chem. Soc. 1992, 114, 9227; Moss, R. A.; Fujita, T.; Okumura, Y. Langmuir 1991, 7, 2415.
7. Joo, C. N.; Shier, T.; Kates, M. J. Lipid Res. 1968, 9, 782.
8. In this work racemic glycerol and a mixture of stereoisomers of phytanol were employed. For routes to stereochemically
pure phytanol, see: Sita, L. R. J. Org. Chem. 1993, 58, 5285; Burns, C. J.; Field, L. D.; Hashimoto, K.; Petteys, B. J.; Ridley,
D. D.; Rose, M. Aust. J. Chem. 1999, 52, 387.
9. Crich, D.; Beckwith, A. L. J.; Chen, C.; Yao, Q.; Davison, I. G. E.; Longmore, R. W.; Anaya de Parrodi, C.; Quintero-Cortes,
L.; Sandoval-Ramirez, J. J. Am. Chem. Soc. 1995, 117, 8757.
10. Aragozzini, F.; Maconi, E.; Ponteza, D.; Scolastico, C. Synthesis 1989, 225.
11. Nineham, A. W. J. Chem. Soc. 1953, 2601. In the present work the dibromide 10 was prepared in two steps from ω-
pentadecalactone by reductive ring-opening (LiAlH4, THF, 90%) and reaction of the generated diol with HBr (H2SO4,
95%).
12. Spectroscopic data for key compounds prepared in this work. Compound 5: 1H NMR (CDCl3, 200 MHz) δ 0.80–0.95 (15H,
m, phytanyl CH3s), 0.95–1.72 (24H, m, phytanyl CH2s and CHs), 3.40–3.80 (7H, m, CH–O and CH2–O); m/z (CI): 372.64
1
(M+H+). Found: C, 73.6; H, 12.9; C23H48O3·0.2H2O requires: C, 73.4; H, 13.0%. Compound 6: H NMR (CDCl3, 200
MHz) δ 0.81–0.93 (15H, m, phytanyl CH3s), 0.93–1.69 (24H, m, phytanyl CH2s and CHs), 3.51–3.70 (7H, m, CH2–O),
4.36, 4.42 (1H, m, CHPh, cis:trans, 1:1), 7.36, 7.45 (5H, m, CHPh, cis:trans, 1:1); m/z (CI): 461.4 (M+H+). Found: C, 78.2;
H, 11.4; C30H52O3 requires: C, 78.2; H, 11.4%. Compound 7: 1H NMR (CDCl3, 200 MHz) δ 0.80–0.92 (15H, m, phytanyl
CH3s), 0.92–1.70 (24H, m, phytanyl CH2s and CHs), 3.48–3.80 (7H, m, CH–O and CH2–O), 4.55 (2H, m, CH2Ph), 7.3
(5H, m, CH2Ph); m/z (CI): 463.3 (M+H+). Found: C, 78.0; H, 12.1; C30H54O3 requires: C, 77.9; H, 11.8%. Compound 9: 1H
NMR (CDCl3, 200 MHz) δ 0.82–0.88 (15H, m, phytanyl CH3s), 1.08–1.37 (24H, m, phytanyl CH2s and CHs), 2.32 (1H,
s(br), OH), 3.50 (6H, m, CH2–O), 3.98 (1H, m, CH–O), 4.55 (s, 2H, O–CH2–Ph), 7.32 (m, 5H, CH2–Ph); m/z (EI) (HR)
found: 462.4086; C30H54O3 requires: 462.4072. Compound 11: 1H NMR (CDCl3, 200 MHz) δ 0.80–0.90 (15H, m, phytanyl
CH3s), 0.90–1.62 (52H, m, phytanyl CH2s and CHs), 3.39–3.66 (9H, m, CH–O and CH2–O), 4.58 (2H, s, CH2Ph), 7.35 (5H,
m, CH2Ph); m/z (CI): 753.4 (M+H+). Found: C, 71.8; H, 11.6; C45H83BrO3 requires: C, 71.9; H, 11.1%. Compound 12: 1H
NMR (CDCl3, 200 MHz) δ 0.82–0.88 (15H, m, phytanyl CH3s), 1.18–1.59 (52H, m, phytanyl CH2s, CHs and C15 chain
CH2s), 3.36–3.57 (9H, m, CH–O and CH2–O), 4.55 (2H, s, CH2–Ph), 7.32 (m, 5H, aromatic protons); m/z (EI) 752 (M+).
Found: C, 72.1; H, 11.2; C45H83BrO3 requires: C, 71.9; H, 11.1%. Compound 2: 1H NMR (CDCl3, 200 MHz) δ 0.80–0.95
(30H, m, phytanyl CH3s), 0.95–1.70 (100H, m, phytanyl CH2s and CHs), 3.40–3.80 (18H, m, CH–O and CH2–O), 3.98 (4H,
t, CH2OAr), 6.93, 7.43 (8H, AA0XX0 multiplets, arom. –H); m/z (ES): 1370 (M+Na+). Found: C, 78.3; H, 12.2; C88H162O8
requires: C, 78.4; H, 12.1%. Compound 3: 1H NMR (CDCl3, 200 MHz) δ 0.82–0.88 (30H, m, phytanyl CH3s), 1.07–1.73
(100H, m, phytanyl CH2s, CHs and C15 chain CH2s), 3.47–3.62 (18H, m, CH–O and CH2–O), 3.98 (4H, CH2–O–Ar), 6.95,
7.46 (8H, AA0XX0 multiplets, arom. –H); m/z (ESI) 1348 (M+). Found: C, 78.1; H, 12.1; C88H162O8 requires: C,78.4; H,
12.1%.