ORGANIC
LETTERS
2005
Vol. 7, No. 16
3461-3463
An Anionic Nucleophilic Catalyst
System for the Diastereoselective
Synthesis of trans-â-Lactams
Anthony Weatherwax, Ciby J. Abraham, and Thomas Lectka*
Department of Chemistry, New Chemistry Building, Johns Hopkins UniVersity,
3400 North Charles Street, Baltimore, Maryland 21218
Received May 12, 2005
ABSTRACT
Trans-disubstituted
synthesis an attractive goal for chemists. We introduce an anionic, nucleophilic catalyst system that provides an efficient, diastereoselective
route to trans-disubstituted -lactams, a complement to our previously described catalytic methodology for generating the corresponding cis
â-lactams show increasing utility and prominence in numerous pharmaceutical applications, making their asymmetric
â
diastereomers. This catalytic, “switch mechanism” process allows for flexibility in the stereoselective synthesis of
cis or trans products as desired from the same substrates.
â-lactams, producing either
Long at the forefront of antibiotic development,1 â-lactam
chemistry has begun to branch out forcefully into new areas
of research. Many of the new uses of â-lactams, most notably
as serine protease inhibitors,2 particularly of thrombin,3
chymase,4 and tryptase,5 as well as â-lactamase inhibitors,6
have one common requirement: they all necessitate a trans
relationship between the ring substituents of an R,â-disub-
stituted â-lactam core. While we have previously developed
catalytic methodology to produce disubstituted cis-â-lactams
in excellent yields and high enantio- and diastereoselectivity,7
the disubstituted trans-â-lactams have remained a more
elusive target, with only a few catalyst-mediated routes
known.8 A hallmark of these published works is the careful
choice of substrates to obtain the desired selectivities.
(1) For a review on â-lactam antibiotics, see: (a) Rolinson, G. N. J.
Antimicrob. Chemother. 1998, 41, 589-603. (b) The Organic Chemistry
of â-Lactams; Georg, G. I., Ed.; VCH Publications: New York, 1993 and
references therein.
(2) Wilmouth, R. C.; Kassamally, S.; Westwood, N. J.; Sheppard, R. J.;
Claridge, T. D.; Alpin, R. T.; Wright, P. A.; Pritchard, G. J.; Schofield, C.
J. Biochemistry 1999, 38, 7989-7998.
(3) Han, W. T.; Trehan, A. K.; Wright, J. J. K.; Federici, M. E.; Seiler,
S. M.; Meanwell, N. A. Bioorg. Med. Chem. 1995, 3, 1123-1143.
(4) Aoyama, Y.; Uenaka, M.; Kii, M.; Tanaka, M.; Konoike, T.;
Hayasaki-Kajiwara, Y.; Naya, N.; Nakajima, M. Bioorg. Med. Chem. 2001,
9, 3065-3075.
(5) Ono, S.; Kuwahara, S.; Takeuchi, M.; Sakashita, H.; Naito, Y.; Kondo,
T. Bioorg. Med. Chem. Lett. 1999, 9, 3285-3290.
In this letter, we report the development of an anionic,
nucleophilic catalyst system based on a 2-aryl-2-imidazoline
scaffold that has allowed us to obtain trans-â-lactams in good
to excellent diastereoselectivity. We employ acid chlorides
(as ketene precursors),9 imino esters, and proton sponge (as
(7) (a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J.,
III; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831-7832. (b) Taggi, A. E.;
Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem.
Soc. 2002, 124, 6626-6635.
(6) (a) Deziel, R.; Malenfant, E. Bioorg. Med. Chem. Lett. 1998, 8, 1437-
1442. (b) Yoakim, C.; Ogilvie, W.; Cameron, D.; Chabot, C.; Grande-Matre,
C.; Guse, I.; Hache, B.; Naud, J.; Kawai, S.; O’Meara, J.; Plante, R.; Deziel,
R. AntiViral Chem. Chemother. 1998, 9, 379-387.
(8) (a) Tanaka, H.; Hai, A. K. M. A.; Sadakane, M.; Okumoto, H.; Torii,
S. J. Org. Chem. 1994, 59, 3040-3046. (b) Townes, J. A.; Evans, M. A.;
Queffelec, J.; Taylor, S. J.; Morken, J. P. Org. Lett. 2002, 4, 2537-2540.
(9) Tidwell, T. T. Ketenes; John Wiley & Sons: New York, 1995.
10.1021/ol0511070 CCC: $30.25
© 2005 American Chemical Society
Published on Web 07/06/2005