pubs.acs.org/Langmuir
© 2009 American Chemical Society
Charge-Transfer Interaction between Poly(9-vinylcarbazole) and
3,5-Dinitrobenzamido Group or 3-Nitrobenzamido Group
Ying Yu,† Yuan Yao,‡ Liyan Wang,*,† and Zesheng Li‡
†State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China,
and ‡Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology,
Harbin 150080, China
Received August 15, 2009. Revised Manuscript Received September 30, 2009
We studied the charge-transfer (CT) interaction between poly(9-vinylcarbazole) (PVK) and 3,5-dinitrobenzamido
(DBA) group or 3-nitrobenzamido (NBA) group. The complexation equilibrium constant of PVK and N-butyl-3,5-
dinitrobenzamide was found to be larger than that of PVK and N-butyl-3-nitrobenzamide using UV-vis spectroscopy.
The desorption process of PVK from a DBA-modified substrate was studied with single molecule force spectroscopy. A
lot of force-extension curves with a plateau were observed, which indicated the existence of trainlike conformation. The
average desorption force of a PVK chain from the DBA-modified substrate was 28 pN. For comparison, the desorption
process of PVK from an NBA-modified substrate was also studied, and an average desorption force of 18 pN was
obtained. The apparent interaction energy of a CT complex was calculated on the basis of the desorption force and the
surface density of electron acceptors. The obtained apparent interaction energies were 14 and 8 kJ mol-1 for the
3
carbazolyl-DBA complex and carbazolyl-NBA complex, respectively. On the basis of the energy of the frontier
molecular orbital of carbazole, 3,5-dinitrobenzamide, and 3-nitrobenzamide, the difference in strength between the
interactions was interpreted as the influence of the substituent group on the energy of the frontier molecular orbital.
Introduction
technique for investigating nanomechanical properties and ad-
sorption processes of single polymer chains.12-18 Different types
of interactions, for example, electrostatic19 or hydrogen-bond-
ing,20 that determined adsorption processes of polymers have
been characterized by SMFS. These research studies provide
valuable information about the nature of noncovalent interac-
tions and facilitate the control of polymer layer-by-layer
assembly.19-21 Besides polymer adsorption, SMFS is effective
for detecting noncovalent interaction between small molecules,
such as molecular recognition,22,23 CT interaction,24,25 multiple
hydrogen bonding,26 and π-π stacking,27 through measuring
rupture forces.
Polymer adsorption at the liquid-solid interface is the most
important step for the layer-by-layer (LbL) assembling technique,
which has proved to be a versatile method for fabricating a
multilayer film with controlled composition and architecture.1-6
The driving force for LbL assembly has been extended from
electrostatic force7 to other secondary intermolecular inter-
actions.8-11 For example, LbL assembly via hydrogen bonding
was developed by Stockton and Rubner8 and Wang and co-
workers,9 separately. Yamamoto et al. reported LbL assembly
based on the charge-transfer (CT) interaction between the dini-
trobenzoyl group and carbazolyl group.11 Polymer adsorption
based on electrostatic force, hydrogen bonding, and so on is
already studied by many kinds of methods, while research on
polymer adsorption based on CT interaction has not been
reported yet.
(12) Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Science
1997, 276, 1109.
(13) Li, H. B.; Zhang, W. K.; Zhang, X.; Shen, J. C.; Liu, B. B.; Gao, C. X.; Zou,
G. T. Macromol. Rapid Commun. 1998, 19, 609.
(14) (a) Li, H. B.; Liu, B. B.; Zhang, X.; Gao, C. X.; Shen, J. C.; Zou, G.
Langmuir 1999, 15, 2120.
(15) Zhang, W. K.; Xu, Q. B.; Zou, S.; Li, H. B.; Xu, W. Q.; Zhang, X.; Shao, Z.
Z.; Kudera, M.; Gaub, H. E. Langmuir 2000, 16, 4305.
(16) Zou, S.; Zhang, W. K.; Zhang, X.; Jiang, B. Z. Langmuir 2001, 17, 4799.
(17) (a) Hugel, T.; Seitz, M. Macromol. Rapid Commun. 2001, 22, 989. (b) Zhang,
W. K.; Zhang, X. Prog. Polym. Sci. 2003, 28, 1271.
Single molecule force spectroscopy (SMFS), which is based on
atomic force microscopy (AFM), has proved to be a powerful
*Corresponding author. Telephone: þ86-431-85168479. Fax: þ86-431-
85193421. E-mail: wangliyan@vip.sina.com.
(1) Decher, G.; Schlenoff, J. B. Multilayer Thin Films - Sequential Assembly of
Nanocomposite Materials; Wiley-VCH: Weinheim, Germany, 2003.
(2) Zhang, X.; Gao, M. L.; Kong, X. X.; Sun, Y. P.; Shen, J. C. J. Chem. Soc.,
Chem. Commun. 1994, 1055.
(18) Zhang, Q.; Jaroniec, J.; Lee, G.; Marszalek, P. E. Angew. Chem., Int. Ed.
2005, 44, 2723.
(19) Hugel, T.; Grosholz, M.; Clausen-Schaumann, H.; Pfau, A.; Gaub, H. E.;
Seitz, M. Macromolecules 2001, 34, 1039.
(3) Decher, G. Science 1997, 277, 1232.
(20) Morris, S.; Hanna, S.; Miles, M. J. Nanotechnology 2004, 15, 1296.
(21) Friedsam, C.; Seitz, M.; Gaub, H. E. J. Phys.: Condens. Matter 2004, 16,
S2369.
(4) Donath, E.; Sukhorukov, G. B. Angew. Chem., Int. Ed. 1998, 37, 2202.
(5) Shiratori, S. S.; Rubner, M. F. Macromolecules 2000, 33, 4213.
(6) Zhang, X.; Chen, H.; Zhang, H. Y. Chem. Commun. 2007, 1395.
(7) Decher, G.; Hong, J. D. Makromol. Chem., Macromol. Symp. 1991, 46, 321.
(8) Stockton, W. B.; Rubner, M. F. Macromolecules 1997, 30, 2717.
(9) (a) Wang, L. Y.; Wang, Z. Q.; Zhang, X.; Shen, J. C.; Chi, L. F.; Fuchs, H.
Macromol. Rapid Commun. 1997, 18, 509. (b) Wang, L. Y.; Cui, S. X.; Wang, Z. Q.;
Zhang, X. Langmuir 2000, 16, 10490.
€
(22) Schonherr, H.; Beulen, M. W. J.; Bu1gler, J.; Huskens, J.; van Veggel, F. C.
J. M.; Reinhoudt, D. N.; Vancso, G. J. J. Am. Chem. Soc. 2000, 122, 4963.
(23) Kado, S.; Kimura, K. J. Am. Chem. Soc. 2003, 125, 4560.
(24) Skulason, H.; Frisbie, C. D. J. Am. Chem. Soc. 2002, 124, 15125.
(25) (a) Gil, R.; Guillerez, M.-G.; Poulin, J.-C.; Schulz, E. Langmuir 2007, 23,
542. (b) Gil, R.; Fiaud, J.-C.; Poulin, J.-C.; Schulz, E. Chem. Commun. 2003, 2234.
€
(10) (a) Sun, J.; Wang, L. Y.; Gao, J.; Wang, Z. Q. J. Colloid Interface Sci. 2005,
287, 207. (b) Flink, S.; van Veggel, F.C. J. M.; Reinhoudt, D. N. Chem. Commun. 1999,
2229.
(26) (a) Zou, S.; Schonherr, H.; Vancso, G. J. J. Am. Chem. Soc. 2005, 127,
11231. (b) Friedsam, C.; Becares, A. D. C.; Jonas, U.; Seitz, M.; Gaub, H. E. New
J. Phys. 2004, 6, 1.
(11) Shimazaki, Y.; Mitsushi, M.; Ito, S.; Yamamoto, M. Langmuir 1997, 13,
1385.
(27) Zhang, Y. H.; Liu, C. J.; Shi, W. Q.; Wang, Z. Q.; Dai, L.; Zhang, X.
Langmuir 2007, 23, 7911.
Langmuir 2010, 26(5), 3275–3279
Published on Web 11/17/2009
DOI: 10.1021/la9030409 3275