1
040
D. P. Curran, G. Gualtieri
LETTER
Table Hydrometallation of Methyl Methacrylate with Tin Hy-
dride 1a and Germanium Hydrides 9a,b.
(3) Nanni, D.; Curran, D. P. Tetrahedron: Asymmetry 1996, 7,
2417.
(
4) a) Blumenstein, M.; Schwarzkopf, K.; Metzger, J. O. Angew.
Chem., Int. Ed. Engl. 1997, 36, 235. b) Schwarzkopf, K.;
Blumenstein, M.; Hayen, A.; Metzger, J. O. Eur J. Org. Chem.
1998, 177.
(5) Dakternieks, D.; Dunn, K.; Perchyonok, V. T.; Schiesser, C.
H. Chem. Commun. 1999, 1665.
(
6) a) Murakata, M.; Tsutsui, H.; Hoshino, O. J. Chem. Soc.,
Chem. Commun. 1995, 481. b) Murakata, M.; Tsutsui, H.;
Takeuchi, N.; Hoshino, O. Tetrahedron 1999, 55, 10295.
7) Renaud, P.; Gerster, M. Angew. Chem., Int. Ed. Engl. 1998,
(
(
(
37, 2563.
8) Yamamoto, H.; Maruoka, K.; Ishihara, K. J. Syn. Org. Chem.
Jpn. 1994, 52, 912.
9) Bao, J. M.; Wulff, W. D.; Rheingold, A. L. J. Am. Chem. Soc.
1993, 115, 3814.
(
(
(
(
10) a) Chemistry of Tin; 2nd ed.; Smith, P. J., Ed.; Blackie:
London, 1997. b) Davies, A. G. Organotin Chemistry; VCH:
Weinheim, 1997.
a) Isolated yield of mixture unless otherwise indicated; b) by NMR
analysis; c) configurations of 10a/11a not known; d) by HPLC
analysis; e) isolated yield of pure 12b.
11) a) Fabbri, D.; Delogu, G.; De Lucchi, O. J. Org. Chem. 1993,
58, 1748. b) Bandarage, U. K.; Simpson, J.; Smith, R. A. J.;
Weavers, R.T. Tetrahedron 1994, 50, 3463.
12) Chatgilialoglu, C.; Newcomb, M. In Advances In
Organometallic Chemistry; R. West and A. F. Hill, Ed.;
Academic Press: San Diego, 1999; Vol. 44; pp 67.
13) Chatgilialoglu, C.; Guerra, M.; Guerrini, A.; Seconi, G.;
Clark, K. B.; Griller, D.; Kanabus-Kaminska, J.; Martinho-
Simões, J. A. J. Org. Chem. 1992, 57, 2427.
pure form by chromatographic purification, and the crys-
tal structure of the alcohol (not shown) obtained by
DIBAL reduction was solved to assign the relative con-
figuration.
The change from dialkyltin hydride 1a to dithiogermani- (14) a) Drake, J. E.; Glavincevski, B. M.; Henderson, H. E. Inorg.
Nucl. Chem. Lett. 1977, 13, 565. b) Drake, J. E.; Hemmings,
R. T.; Henderson, E. J. Chem. Soc. Dalton Trans. 1976, 366.
c) Klein, B.; Neumann, W. P.; Weisbeck, M. P.; Wienken, S.
J. Organomet. Chem. 1993, 446, 149. d) Rivière, P.; Dousse,
G.; Satgé, J. Syn. React. Inorg. Metal-Org. Chem. 1974, 4,
281.
um hydride 9a has relatively little effect on the stereose-
lectivity, but the addition of the two trimethylsilyl groups,
9
b, has a strong beneficial effect. This supports the notion
that bulky substituents in the vicinity of the Ge H bond
can enhance selectivity. Two germaniums are involved in
the asymmetric hydrogen transfer step in a kind of double (15) a) Brook, A.G.; Peddle, G. J. D. J. Am. Chem. Soc. 1963, 85,
1
869. b) Brook, A.G.; Peddle, G. J. D. J. Am. Chem. Soc.
asymmetric induction. Comparison of the results with ra-
cemic and enantiopure hydrides suggests that the germa-
nium atom bonded to the radical plays the major role
while the germanium atom that donates the hydrogen en-
hances the selectivity somewhat if both germaniums are
of the same configuration (matched pair).
1963, 85, 2338. c) Bott, R. W.; Eaborn, C.; Varma, I. D. Chem.
Ind. 1963, 614. d) Eaborn, C.; Simpson, P.; Varma, I. D. J.
Chem. Soc. (A) 1966, 1133. e) Tacke, R.; Kosub, U.; Wagner,
S. A., Bertermann, R.; Schwarz, S.; Merget, S.; Günther, K.
Organometallics, 1998, 17, 1687. f) Colesdan, F.; Castel, A.;
Rivière, P.; Satgé, J. Veith, M.; Huch, V. ibid. 1998, 17, 2222.
16) De Lucchi, O.; Fabbri, D.; Delogu, G. J. Org. Chem. 1995, 60,
(
(
These results encourage further work on the design and
synthesis of tin, germanium or silicon hydrides where the
M H bond begins to reside in a cleft defined by the sub-
6599.
17) Cossu, S.; De Lucchi, O.; Fabbri, D.; Valle, G.; Painter, G. F.;
Smith R. A. J. Tetrahedron 1997, 53, 6073.
stituents. Detailed studies on the structure (x-ray, NMR) (18) Representative Procedures: 4-tert-Butyl-4-chloro-2,6-bis-
and reactivity (rate constants, ees) of the two new germa-
nium hydrides will be reported in a forthcoming full pa-
per.
trimethylsilyl-3,5-dithia-4-germa-cyclohepta[2,1-a;3,4-
a ]dinaphthalene (8b). Triethylamine (1 mL, 7.2 mmol) was
added dropwise to a stirred solution of 3,3 -bis(trimethylsilyl)-
1,1 -binaphto-2,2 -dithiol (5b) (845 mg, 1.8 mmol) and
t-BuGeCl (480 mg, 2.0 mmol)in THF (40 mL) at 0 °C. After
3
addition was complete, the ice bath was removed and the
reaction mixture allowed to warm to room temperature. After
stirring for 2 h, the mixture was diluted with diethyl ether and
filtered. The filtrate was concentrated under reduced pressure
and the residue recrystallized from hexanes to afford 1.11 g
Acknowledgement
We thank the National Science Foundation for funding this work.
We also thank Dr. Steven Geib for solving the crystal structures.
(
4
97%) of 8b as white crystals.
-tert-Butyl-2,6-bis-trimethylsilyl-3,5-dithia-4-germa-
References and Notes
cyclohepta[2,1-a;3,4-a ]dinaphthalene (9b). Lithium
borohydride (2.0 M solution in THF, 6.2 mL, 12.4 mmol) was
added to a stirred solution of 8b (388 mg, 0.62 mmol) in THF
(
(
1) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163.
2) a) Gielen, M. Top. Curr. Chem. 1982, 104, 57. b) Schumann,
H.; Wasserman, B. C.; Pickardt, J. Organometallics 1993, 12,
(
20 mL) at 0 °C. The reaction mixture was kept at –8 °C
3051. c) Podestá, J. C.; Chopa, A. B.; Radivoy, G. E.; Vitale,
without stirring for 5 days, then it was diluted with diethyl
C. A. J. Organomet. Chem. 1995, 494, 11.
ether and poured into 100 mL of cold NH Cl aqueous solution
4
Synlett 2001, SI, 1038–1041 ISSN 0936-5214 © Thieme Stuttgart · New York