P.C. Kunz et al. / Journal of Organometallic Chemistry 695 (2010) 1891e1897
1897
{1H}-NMR (125 MHz, 296 K, CDCl3):
d
/ppm ¼ 28.5 ((CH2)2), 132.5
least-squares methods on F2 with SHELXL-97 [28]. The structures
were checked for higher symmetry with help of the program Platon
[29]. A disordered THF molecule was found in 10$C4H8O$½C2H5OH,
the two orientations were refined with a ratio of 6:4. In addition
a half occupied ethanol molecule near a centre of inversion was
found. In both cases, appropriate restraints were applied.
(C5), 151.0 (C4), 159.0 (C2). 31P{1H}-NMR (81 MHz, 296 K, CDCl3):
d
/ppm ¼ ꢀ52 (s). EI MS (Pt, 210 ꢂC): m/z (%) ¼ 426 (2.4) [M]þ.
C14H12N4P2S4 H2O (443.95): calcd. C 37.8, H 3.2, N 12.6; found C
38.2, H 3.3, N 12.1.
4.10. Synthesis of [(2)2Rh2Cl2]Cl2 (10)
Appendix. Supporting material
[{(CO)2RhCl}2] (30 mg, 77
mmol) was added to a solution of 2
(63.9 mg, 154 mol) in CHCl3. The solution was stirred at ambient
m
Supplementary information associated with this article could be
temperature for 1.5 h. The volume was concentrated to one third,
then n-hexane added. The resulting red precipitate was removed by
centrifugation, washed with n-hexane and dried in vacuo. Yield
19 mg, 21%. Crystals were grown form EtOH/thf. 1H NMR (200 MHz,
References
296 K, MeOD-d4):
d
/ppm ¼ 2.47 (m, 4H, CH2, broad), 3.79 (s, 12H,
NCH3 broad), 7.17 (s, 4H, Him), 7.40 (s, 4H, Him), 7.45 (s, 4H, Him),
7.76 (s, 4H, Him). 13C{1H} NMR (125 MHz, 296 K, MeOD-d4):
[1] T. Imamoto, J. Watanabe, Y. Wada, H. Masuda, H. Yamada, H. Tsuruta,
S. Matsukawa, K. Yamaguchis, J. Am. Chem. Soc. 120 (1998) 1635e1636.
[2] A.S. Tsai, R.M. Wilson, H. Harada, R.G. Bergman, J.A. Ellman, Chem. Commun.
(2009) 3910e3912.
[3] C.S. Allardyce, P.J. Dyson, D.J. Ellis, S.L. Heath, Chem. Commun. (2001)
1396e1397.
[4] C.K. Mirabelli, D.T. Hill, L.F. Faucette, F.L. McCabe, G.R. Girard, D.B. Bryan, B.
M. Sutton, J.O. Bartus, S.T. Crooke, R.K. Johnson, J. Med, Chem. 30 (1987)
2181e2190.
[5] G. Hoke, G. Rush, G. Bossard, J. McArdle, B.D. Jensen, C.K. Mirabelli, J. Biol.
Chem. 23 (1988) 11203e11210.
d
/ppm ¼ 25.0 ((CH2)2), 33.5 (NCH3), 27.0 (Cim, 2 signals), 129.3
(Cim), 130.2 (Cim). 31P{1H} NMR (81 MHz, 296 K, MeOD-d4):
d
/ppm ¼ 34.0 ppm (d, J ¼ 126 Hz). MALDI TOF (DIT, CHCl3):
m/z ¼ 1034.1 [L2Rh2]þ, 1069.1 [L2Rh2Cl]þ, 1104.1 [L2Rh2Cl2]þ.
C36H48N16Cl4P4Rh2$CH2Cl2$4H2O (1333.40): calcd. C 33.3, H 4.4, N
16.8; found C 33.4, H 4.5, N 16.45. IR (KBr):
(s, broad), 3102 (m), 2956 (m), 1281 (m), 773 (m), 565 (s), 513 (m).
n
/cmꢀ1 ¼3395
[6] G.D. Hoke, R.A. Macia, P.C. Meunier, P.J. Bugelski, C.K. Mirabelli, G.F. Rush, W.
D. Matthews, Toxicol. Appl. Pharm. 100 (1989) 293e306.
[7] A.S. Humphreys, A. Filipovska, S.J. Berners-Price, Dalton Trans. (2007)
4943e4950.
[8] S.J. Berners-Price, R.J. Bowen, T.W. Hambley, P.C. Healy, J. Chem. Soc., Dalton
Trans. (1999) 1337e1346.
[9] S.J. Berners-Price, R.J. Bowen, P. Galettis, P.C. Healy, M.J. McKeage, Coord.
Chem. Rev. 186 (1999) 823e836.
[10] R.J. Bowen, A.C. Garner, S.J. Berners-Price, I.D. Jenkins, R.E. Sue, J. Organomet.
Chem. 554 (1998) 181e184.
[11] S.J. Berners-Price, R.J. Bowen, P.J. Harvey, P.C. Healy, G.A. Koutsantonis, J.
Chem. Soc., Dalton Trans. (1998) 1743e1750.
[12] P.C. Kunz, W. Kläui, Collect. Czech. Chem. Commun. 72 (2007) 492e502.
[13] P.C. Kunz, J. GuidoReiß, W. Frank, W. Kläui, Eur. J. Inorg. Chem. 2003 (2003)
3945e3951.
[14] R.J. Burt, J. Chatt, W. Hussain, G.J. Leigh, J. Organomet. Chem. 182 (1979)
203e206.
[15] J. Chatt, W. Hussain, G.J. Leigh, H.M. Ali, C.J. Pickett, D.A. Rankin, J. Chem. Soc.,
Dalton Trans. (1985) 1131e1183.
5. Measurement of lipophilicity (log D)
The n-octanolewater partition coefficients of the compounds
1 ꢀ9 were determined using a shake-flask method. PBS buffered
bidistilled water (100 mL, phosphate buffer, c(PO34-) ¼ 10 mM, c
(NaCl) ¼ 0.15 M, pH adjusted to 7.4 with HCl) and n-octanol
(100 mL) were shaken together using a laboratory shaker (Per-
kineElmer), for 72 h to allow saturation of both phases. 1 mg of
each compound was mixed in 1 mL of aqueous and organic phase,
respectively for 10 min using a laboratory vortexer. The resultant
emulsion was centrifuged (3000 ꢃ g, 5 min) to separate the phases.
The concentrations of the compounds in the organic and aqueous
phases were then determined using UV absorbance spectroscopy
(230 nm). Log DpH was defined as the logarithm of the ratio of the
concentrations of the complex in the organic and aqueous phases
(log D ¼ log{[diphos(org)]/[diphos(aq)]}; the value reported is the
mean of three separate determinations.
[16] S.S. Moore, G.M. Whitesides, J. Org. Chem. 47 (1982) 1489e1493.
[17] P.C. Kunz, G.J. Reiss, W. Frank, W. Kläui, Eur. J. Inorg. Chem. (2003) 3945e3951.
[18] N.J. Curtis, R.S. Brown, J. Org. Chem. 45 (1980) 4038e4040.
[19] J.P. Collman, M. Zhong, Z. Wang, Org. Lett. 1 (1999) 949e951.
[20] M.F.M. Al-Dulaymmi, A. Hills, P.B. Hitchcock, D.L. Hughes, R.L. Richards, J.
Chem. Soc., Dalton Trans. (1992) 241e248.
6. Crystallographic studies
[21] M.F.M. Al-Dulaymmi, P.B. Hitchcock, R.L. Richards, Polyhedron 10 (1991)
1549e1557.
[22] M.F.M. Al-Dulaymmi, P.B. Hitchcock, R.L. Richards, J. Organomet. Chem. 338
(1988) C31eC34.
[23] J.M. Landesberg, K.N. Houk, J.S. Michelman, J. Am. Chem. Soc. 88 (1966)
4265e4266.
[24] C. Pelizzi, G. Pelizzi, Acta Cryst. B35 (1979) 1785e1790.
[25] E.R.T. Tiekink, Z. Kristallogr. - New Cryst. Struct. 216 (2001) 69e70.
[26] CrysAlisPro Software system. Oxford Diffraction Ltd, Oxford, UK, 2007, 171.32.
[27] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo,
A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 32 (1999)
115e119.
Crystallographic data were collected at 183(2) K on an Oxford
Diffraction Xcalibur system with a Ruby detector using Mo Ka
radiation (
l
¼ 0.7107 Å) that was graphite-monochromated. Suit-
able crystals were covered with oil (Infineum V8512, formerly
known as Paratone N), mounted on top of a glass fibre and
immediately transferred to the diffractometer. The program suite
CrysAlisPro was used for data collection, semi-empirical absorption
correction and data reduction [26]. Structures were solved with
direct methods using SIR97 [27] and were refined by full-matrix
[28] G.M. Sheldrick, Acta Cryst. A64 (2008) 112e122.
[29] A. Spek, J. Appl. Cryst. 36 (2003) 7e13.