Journal of the American Chemical Society
Communication
position opposite of a substituent, which we believe gives rise to
the minor isomer of 25a. Hydrogen bonding may be an even
stronger influence on the selectivity, as the amide is essential to
(2) (a) Korenaga, T.; Kosaki, T.; Fukumura, R.; Ema, T.; Sakai, T. Org.
Lett. 2005, 7, 4915. (b) Wei, Y.; Kan, J.; Wang, M.; Su, W.; Hong, M.
Org. Lett. 2009, 11, 3346. (c) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am.
Chem. Soc. 2010, 132, 14073. (d) Frohn, H.-J.; Adonin, N. Y.; Bardin, V.
V.; Starichenko, V. F. J. Fluorine Chem. 2002, 117, 115. (e) Coe, P. L.;
Pearl, G. M. J. Organomet. Chem. 1971, 31, 55. (f) DePasquale, R. J.;
Tamborski, C. J. Org. Chem. 1969, 34, 1736. (g) Shang, R.; Fu, Y.; Wang,
Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 9350.
obtain the minor regioisomer of 27a. We previously observed8
similar switches of selectivity with NHAc perfluoroarenes.
Understanding the subtle and potentially exploitable phenomena
concerning C−F selectivity is the topic of an ongoing
investigation in our group.
(
h) Shang, R.; Xu, Q.; Jiang, Y.-Y.; Wang, Y.; Liu, L. Org. Lett. 2010, 12,
1000.
(3) Lindner, S.; Bras
102.
4) (a) Meyer, A. U.; Slanina, T.; Yao, C.-J.; Ko
, 369. (b) Wei, Y.; Su, W. J. Am. Chem. Soc. 2010, 132, 16377. (c) Li, H.;
Liu, J.; Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Org. Lett. 2011, 13, 276.
5) (a) Kuehnel, M. F.; Lentz, D.; Braun, T. Angew. Chem., Int. Ed.
013, 52, 3328. (b) Ghorbani-Vaghei, R.; Shahbazi, H.; Veisi, H.
In conclusion, we have generated and utilized the perfluoroaryl
radical generated by the photocatalyst fac-Ir(ppy) , blue light,
̈
e, S.; Masters, K.-S. J. Fluorine Chem. 2015, 179,
3
and an amine to form a new C−C bond via dual C−F, C−H
functionalization. This allows access to a wide array of
multifluorinated biaryls. From a synthetic perspective, this
reaction has the potential for significant impact given the
single-step coupling of such broadly accessible starting materials,
the mild conditions, and the functional group tolerance of the
method. From a mechanistic perspective, we have shown that the
perfluoroaryl radical is capable of adding to π systems of a wide
range of arenes, including some that give anti-Minisci selectivity,
followed by oxidation and rearomatization. Given these initial
findings, we expect that this chemistry will facilitate inves-
tigations of new fluorinated chemical space and therefore enable
a number of research efforts.
(
̈
nig, B. ACS Catal. 2016,
6
(
2
Tetrahedron Lett. 2012, 53, 2325. (c) Prakash, G. K. S.; Mathew, T.;
Hoole, D.; Esteves, P. M.; Wang, Q.; Rasul, G.; Olah, G. A. J. Am. Chem.
Soc. 2004, 126, 15770. (d) Manolikakes, G.; Schade, M. A.; Hernandez,
C. M.; Mayr, H.; Knochel, P. Org. Lett. 2008, 10, 2765. (e) Burton, D. J.;
Jairaj, V. J. Fluorine Chem. 2004, 125, 673.
(6) (a) Sun, A. D.; Love, J. A. Org. Lett. 2011, 13, 2750. (b) Yoshikai,
N.; Mashima, H.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 17978.
(
c) Nakamura, Y.; Yoshikai, N.; Ilies, L.; Nakamura, E. Org. Lett. 2012,
4, 3316. (d) Saijo, H.; Sakaguchi, H.; Ohashi, M.; Ogoshi, S.
Organometallics 2014, 33, 3669.
7) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
013, 113, 5322. (b) Hager, D.; MacMillan, D. W. C. J. Am. Chem. Soc.
1
ASSOCIATED CONTENT
Supporting Information
■
(
2
*
S
2014, 136, 16986. (c) McNally, A.; Prier, C. K.; MacMillan, D. W. C.
Science 2011, 334, 1114. (d) Narayanam, J. M. R.; Stephenson, C. R. J.
Chem. Soc. Rev. 2011, 40, 102. (e) Nguyen, J. D.; D’Amato, E. M.;
Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.
Experimental procedures and additional data (PDF)
(
8) Senaweera, S. M.; Singh, A.; Weaver, J. D. J. Am. Chem. Soc. 2014,
AUTHOR INFORMATION
Notes
The authors declare the following competing financial
interest(s): The authors hold a patent, United States Serial No.
2/043,650, concerning the structure and method for the
136, 3002.
(
(
9) Singh, A.; Kubik, J. J.; Weaver, J. D. Chem. Sci. 2015, 6, 7206.
10) The first step of the reaction is transfer of an electron to the
perfluoroarene. Reductive and oxidative quenching are nearly equally
endothermic (0.17−0.16 V vs SCE) in the case of pentafluoropyridine,
DIPEA, and Ir(ppy) . Extrusion of F is likely an irreversible step that
could drive the reaction. With other less-reducible perfluoroarenes,
reductive quenching is likely operative. See ref 9 for more discussion.
(
photoexcited Ir(ppy) * (−2.012 V vs SCE) are strongly reducing.
Oxidative quenching would produce Ir(ppy)3 (0.738 V vs SCE), which
could most likely oxidize int-A. However, because of their low
concentrations, this would be a statistically unlikely event.
−
3
6
−
11) Both the reduced Ir(ppy)3 species (−2.245 V vs SCE) and
Meldrum’s acid adducts.
3
+
ACKNOWLEDGMENTS
■
The reported results were made possible in total or in part by
funding from the Oklahoma Center for the Advancement of
Science and Technology (Award HR-14-072). We gratefully
acknowledge NIH NIGMS (GM115697) for financial support of
this work and thank JID for help in editing the manuscript.
(
(
14) The 19F NMR shifts are consistent with those of other N-
substituted tetrafluoropyridines observed in our lab, which have been
observed to undergo N-arylation followed by dealkylation. No further
attempts were made to characterize this product.
REFERENCES
■
(
2
1) (a) Zahn, A.; Brotschi, C.; Leumann, C. J. Chem. - Eur. J. 2005, 11,
125. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem.
Soc. Rev. 2008, 37, 320. (c) Selby, T. P.; Bereznak, J. F.; Bisaha, J. J.; Ding,
A. X.; Gopalsamuthiram, V.; Hanagan, M. A.; Long, J. K.; Taggi, A. E.
Du Pont). Fungicidal Substituted Azoles. WO 2009137651 A8, 2009.
d) Gregory, V.; Taggi, A. E. (Du Pont). Fungicidal Mixtures. WO
011056463 A2, 2011. (e) Weck, M.; Dunn, A. R.; Matsumoto, K.;
Coates, G. W.; Lobkovsky, E. B.; Grubbs, R. H. Angew. Chem., Int. Ed.
999, 38, 2741. (f) Nitschke, J. R.; Tilley, T. D. J. Am. Chem. Soc. 2001,
23, 10183. (g) Hwang, D.-H.; Song, S. Y.; Ahn, T.; Chu, H. Y.; Do, L.-
M.; Kim, S. H.; Shim, H.-K.; Zyung, T. Synth. Met. 2000, 111−112, 485.
h) Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Adv. Mater. 2003,
5, 1455. (i) Kitamura, T.; Wada, Y.; Yanagida, S. J. Fluorine Chem. 2000,
05, 305. (j) Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Tokito,
S.; Taga, Y. J. Am. Chem. Soc. 2000, 122, 1832. (k) Babudri, F.; Farinola,
(15) Arora, A.; Teegardin, K. A.; Weaver, J. D. Org. Lett. 2015, 17, 3722.
(16) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489.
(17) Senaweera, S. M.; Singh, A.; Weaver, J. D. J. Am. Chem. Soc. 2014,
(
(
2
1
(
36, 3002.
18) (a) Bunnett, J. F. Acc. Chem. Res. 1978, 11, 413. (b) Bunnett, J. F.;
Zahler, R. E. Chem. Rev. 1951, 49, 273.
(19) Rossi, R. A. Acc. Chem. Res. 1982, 15, 164.
1
1
(20) (a) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev.
2
1
015, 115, 931. (b) Kiplinger, J. L.; Richmond, T. G. Chem. Commun.
996, 1115. (c) Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem.
(
1
1
Rev. 1994, 94, 373. (d) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109,
119.
2
(21) Senaweera, S.; Weaver, J. D. J. Org. Chem. 2014, 79, 10466.
G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX