tively, the oxidation of functionalized amines 6 {X ) (CH2)2-
CH(NHCBn)CO2Me} with dimethyldioxirane22-24 or imines
7 with peracids {X ) (CH2)3COOH},25 followed by reaction
with TFA, led to unprotected N-substituted hydroxyl amines
(Scheme 1).
Scheme 1. Existing Synthetic Approaches to Functionalized
Hydroxylamines Potentially Applicable for the Preparation of
FR900098
The nitroso-ene reaction26 represents a convenient method
for the preparation of hydroxylamine derivatives through the
addition of nitroso-reagents to olefins. Herein we present a
new approach to 1 involving the nitroso-ene reaction of
commercially available diethyl allylphosphonate 9 with in
situ prepared nitrosocarbonyl methane (10) as the key step.
This leads to the unsaturated derivative 11, whose hydro-
genation gives diethyl phosphonic ester 12. Upon hydrolysis
to acid 13 and partial neutralization, 1 was isolated in 64%
overall preparative yield over four steps (Scheme 2).
Scheme 2. Preparation of FR900098 (1) from Diethyl
Allylphosphonate via the Nitroso-Ene Reaction
reaction of protected hydroxyl amines BnONHBoc and
HN(Ts)OBn with esters {3, X ) CH2C(O)OBn8 and X )
CH2COOEt},9 BnONH2 with amino acid derivatives {3, X
) (CH2)nCH2CH(NHAc)COOt-Bu}10 and amines {3, X )
(CH2)3NHBoc},11 or BocONHBoc with phosphites {3, X )
CH2P(O)(OAr)2},12 as well as some others.13-15 The hy-
droxylamines 2 were also prepared from substituted alde-
hydes 4 {X ) CH(R)P(O)(OEt)2} via imination with
NH2OBn and further reduction of the intermediate imines 5
with NaBH3CN.16 This approach was developed for the
preparation of the imino derivatives 5 {X ) (CH2)2NHBoc}17
and phosphonic esters 2 {X ) CH2P(O)(OEt)2}16,18-20 and
5 {X ) CH(Ar)P(O)(OEt)2}.21
Difficulties arise from the fact that the transformations of
protected hydroxylamines require the reagents, e.g., strong
bases, which are difficult for large-scale synthesis. Alterna-
Nitrosocarbonyl methane27 is among the most powerful
enophiles28 and it is highly reactive toward many nucleophilic
functional groups. This is the main reason why the nitroso-
ene additions of 10 were previously studied only for
unfunctionalized alkanes.29-33 Owing to its instability, 10 is
usually generated in situ via thermolysis of its 9,10-
dimethylanthracene adduct34 and we have chosen this method
for the preparation of 11 (Scheme 2). Alternative less
(8) Kurz, T.; Geffken, D.; Wackendorff, C. Z. Naturforsch. 2003, 58b,
457-461.
(9) Woo, Y.-H.; Fernandes, R. P. M.; Proteau, P. J. Bioorg. Med. Chem.
2006, 14, 2375-2385.
(10) Nishino, N.; Yoshikawa, D.; Watanabe, L. A.; Kato, T.; Jose, B.;
Komatsu, Y.; Sumida, Y.; Yoshidab, M. Bioorg. Med. Chem. Lett. 2004,
14, 2427-2431.
(11) Wu, T. Y. H.; Hassig, C.; Wu, Y.; Ding, S.; Schultz, P. G. Bioorg.
Med. Chem. Lett. 2004, 14, 449-453.
(12) Reichenberg, A.; Wiesner, J.; Weidemeyer, C.; Dreiseidler, E.;
Sanderbrand, S.; Altincicek, B.; Beck, E.; Schlitzer, M.; Jomaa, H. Bioorg.
Med. Chem. Lett. 2001, 11, 833-835.
(13) Ramurthy, S.; Miller, M. J. J. Org. Chem. 1996, 61, 4120-4124.
(14) Devreux, V.; Wiesner, J.; Goeman, J. L.; Van der Eycken, J.; Jomaa,
H.; Van Calenbergh, S. J. Med. Chem. 2006, 49, 2656-2660.
(15) Hamer, R. R. L.; Tegeler, J. J.; Kurtz, E. S.; Allen, R. C.; Bailey,
S. C.; Elliott, M. E.; Hellyer, L.; Helsley, G. C.; Przekop, P.; Freed, B. S.;
White, J.; Martin, L. L. J. Med. Chem. 1996, 39, 246-252.
(16) Kurz, T.; Schlu¨ter, K.; Kaula, U.; Bergmann, B.; Walter, R. D.;
Geffken, D. Bioorg. Med. Chem. 2006, 14, 5121-5135.
(17) Chaubet, F.; Nguen Van Duong, M.; Gref, A.; Courtieu, J.;
Crumbliss, A. L.; Gaudemer, A. Tetrahedron Lett. 1990, 31, 5729-5732.
(18) Ortmann, R.; Wiesner, J.; Reichenberg, A.; Henschker, D.; Beck,
E.; Jomaa, H.; Schlitzer, M. Arch. Pharm. 2005, 338, 305-314.
(19) Kurz, T.; Geffken, D.; Wackendorff, C. Z. Naturforsch. 2003, 58b,
106-110.
(22) Hu, J.; Miller, M. J. J. Org. Chem. 1994, 59, 4858-4861.
(23) Hu, J.; Miller, M. J. Tetrahedron Lett. 1995, 36, 6379-6382.
(24) Hu, J.; Miller, M. J. J. Am. Chem. Soc. 1997, 119, 3462-3468.
(25) Lin, Y.-M.; Miller, M. J. J. Org. Chem. 1999, 64, 7451-7458.
(26) Adam, W.; Krebs, O. Chem. ReV. 2003, 103, 4131-4146.
(27) Sklarz, B.; al-Sayyab, A. F. J. Chem. Soc. 1964, 1318.
(28) Kirby, G. W. Chem. Soc. ReV. 1977, 6, 1-24.
(29) Keck, G. E.; Yates, J. B. Tetrahedron Lett. 1979, 48, 4627-4630.
(30) Quadrelli, P.; Mella, M.; Caramella, P. Tetrahedron Lett. 1998, 39,
3233-3236.
(31) Keck, G. E.; Webb, R. R.; Yates, J. B. Tetrahedron 1981, 37, 4007-
4016.
(32) Adam, W.; Bottke, N.; Krebs, O.; Saha-Mo¨ller, C. R. Eur. J. Org.
Chem. 1999, 1963-1965.
(20) Ortmann, R.; Wiesner, J.; Reichenberg, A.; Henschker, D.; Beck,
E.; Jomaa, H.; Schlitzer, M. Bioorg. Med. Chem. Lett. 2003, 13, 2163-
2166.
(33) Keck, G. E.; Webb, R. R. J. Am. Chem. Soc. 1981, 103, 3173-
3177.
(21) Haemers, T.; Wiesner, J.; Busson, R.; Jomaa, H.; Van Calenbergh,
S. Eur. J. Org. Chem. 2006, 3856-3863.
(34) Kirby, G. W.; Sweeny, J. C. J. Chem. Soc., Chem. Commun. 1973,
19, 704-705.
4380
Org. Lett., Vol. 9, No. 21, 2007