TABLE 2. Spectral Characteristics of the Synthesized Compounds
IR spectra,
Com-
pound
1Н NMR spectra, δ, ppm (coupling constant, J, Hz)
ν, cm-1
4а
1712, 1674, 1616,
1500; 3350,
3260-3150
DMSO-d6. 1.67-2.67 (6H, m, 3CH2); 5.16 (1H, d, 3J = 3, CH);
7.09-7.56 (4H, m, C6H4); 7.74 (1H, d, 3J = 3, NH);
9.46 (1H, br. s, NH)
4b
1702, 1672, 1650,
1624, 1510; 3350,
3260, 3150
DMSO-d6. 1.78-2.54 (6H, m, 3CH2); 5.23 (1H, d, 3J = 3, CH);
7.07-7.43 (4H, m, C6H4); 7.83 (1H, d, 3J = 3, NH);
9.58 (1H, br. s, NH)
4с
1630, 1610, 1570,
1515; 3250, 3200
DMSO-d6. 1.85-2.63 (6H, m, 3CH2); 5.21 (1H, d, 3J = 3, CH);
7.20-7.99 (4H, m, C6H4); 9.61 (1H, br. s, NH); 10.56 (1H, br. s, NH)
4d
1700, 1650, 1606,
1515; 3240, 3100
DMSO-d6. 1.78-2.67 (6H, m, 3CH2); 3.69 (3H, s, CH3);
5.12 (1H, d, 3J = 3, CH); 6.81 (2H, m, 3J = 8, С6Н4);
7.16 (2H, m, 3J = 8, C6H4); 7.65 (1H, br. s, NH);
9.38 (1H, br. s, NH)
4e
1628, 1572, 1510;
3260, 3200
DMSO-d6. 1.78-2.58 (6H, m, 3CH2); 3.71 (3H, s, CH3);
5.16 (1H, d, 3J = 3, CH); 6.87 (2H, m, 3J = 8, С6Н4);
7.27 (2H, m, 3J = 8, C6H4); 9.66 (1H, d, 3J = 3, NH);
10.58 (1H, br. s, NH)
4f
4g
4h
4i
1708, 1680, 1616,
1500; 3350-3050
DMSO-d6.1.74-2.53 (6H, m, 3CH2); 5.09 (1H, d, 3J = 3, CH);
5.92 (2H, s, CH2); 6.73 (3H, center m, С6Н4);
7.67 (1H, d, 3J = 3, NH); 9.45 (1H, br. s, NH)
DMSO-d6. 1.69-2.56 (6H, m, 3CH2); 5.32 (1H, d, 3J = 3, CH);
7.52-8.07 (5H, m, С6Н4, NH); 9.56 (1H, br. s, NH)
1710-1700, 1652,
1610, 1530; 3350,
3260, 3100
1702, 1660, 1622,
1575, 1535; 3370,
3260, 3140
DMSO-d6. 0.89 (3H, s, CH3); 1.07 (3H, s, CH3); 2.12 (2H, m, CH2);
2.41 (2H, m, СН2); 5.18 (1Н, d, 3J = 3, CH);
7.23-7.49 (4H, m, С6Н4); 7.81 (1H, br. s, NH); 9.56 (1Н, br. s, NH)
1707, 1660, 1615,
1530; 3300, 3220,
3130
DMSO-d6. 0.88 (3H, s, CH3); 1.07 (3H, s, CH3); 2.03 (2H, m, CH2);
2.34 (2H, m, СН2); 5.18 (1Н, d, 3J = 3, CH);
6.98-7.36 (4H, m, С6Н4); 7.81 (1H, br. s, NH); 9.54 (1Н, br. s, NH)
4j
1710, 1674, 1616,
1515; 3320, 3240,
3150
DMSO-d6. 0.92 (3H, s, CH3); 1.05 (3H, s, CH3); 2.05 (2H, m, CH2);
2.31 (2H, m, СН2); 3.72 (3H, s, CH3); 5.14 (1Н, d, 3J = 3, CH);
6.83 (2Н, m, 3J = 8, С6Н4); 7.25 (2Н, m, 3J = 8, C6H4);
7.74 (1H, br. s, NH); 9.45 (1Н, br. s, NH)
5a
5b
1680, 1660, 1622,
1602, 1510
DMSO-d6.1.93-2.66 (12H, m, 6CH2); 4.58 (1H, s, CH);
6.94-7.33 (4H, m, С6Н4, NH)
1685, 1668, 1633,
1518
СDCl3. 0.96 (6H, s, 2CH3); 1.09 (6H, s, 2CH3); 2.16 (4H, s, 2CH2);
2.46 (4H, s, 2CH2); 4.94 (1H, s, CH); 6.81-7.36 (4H, m, С6Н4)
4-(4-Bromophenyl)- (4a), 4-(4-Fluorophenyl)- (4b), 4-(4-Methoxyphenyl)- (4d), 4-(3,4-Methylene-
dioxyphenyl)- (4f), 4-(3-Nitrophenyl)-2,5-dioxo-1,2,3,4,5,6,7,8-octahydroquinazolines (4g), 4-(4-Fluoro-
phenyl)- (4c), 4-(4-Methoxyphenyl)-5-oxo-2-thioxo-1,2,3,4,5,6,7,8-octahydroquinazolines (4e), 4-(3-Bromo-
phenyl)- (4h), 4-(4-Fluorophenyl)- (4i), and 4-(4-Methoxyphenyl)-7,7-dimethyl-2,5-dioxo-1,2,3,4,5,6,7,8-
octahydroquinazolines (4j). Solution of diketone 1 (5 mmol), aldehyde 3 (5 mmol), and urea or thiourea
(15 mmol) in ethanol (30 ml) was boiled for 10 h in the presence of concentrated H2SO4 (0.15 ml). In the case of
quinazolines 4b,d,e,f,i,j a precipitate of the corresponding octahydroxanthene 5 (10-15% calculated on the
aldehyde, identification is given below) was formed on cooling the ethanolic solution. The xanthene 5 precipitate
was filtered off, ethanol (~20 ml) was distilled from the filtrate, the residue was poured into water (70 ml), the
solution neutralized to pH 7 with aqueous KOH solution, and left for 24 h. The precipitated solid, sometimes
oily, was filtered off or decanted from water. The substance obtained was triturated sequentially with hot ethanol
and chloroform to remove octahydroxanthene derivatives. The quinazolines 4, obtained in this way are pure
substances according to TLC data. Recrystallization of them from THF or DMF led to significant loss, but the
melting point did not change.
45