Published on Web 06/14/2006
Regio- and Stereoselective Nickel-Catalyzed Homoallylation of
Aldehydes with 1,3-Dienes
Masanari Kimura,† Akihiro Ezoe,† Masahiko Mori,† Keisuke Iwata,† and
Yoshinao Tamaru*
Contribution from the Department of Applied Chemistry, Faculty of Engineering, Nagasaki
UniVersity, 1-14 Bunkyo, Nagasaki 852-8521, Japan, and Graduate School of Science and
Technology, Nagasaki UniVersity, 1-14 Bunkyo, Nagasaki 852-8521, Japan
Received February 16, 2006; E-mail: tamaru@net.nagasaki-u.ac.jp
Abstract: Ni(acac)2 catalyzes homoallylation of aldehydes with 1,3-dienes in the presence of triethylborane.
Triethylborane serves as a reducing agent delivering a formal hydride to the C2 position of 1,3-dienes,
thus generating a formal homoallyl anion species and enabling the novel homoallylation of aldehydes. The
reaction proceeds smoothly at room temperature in the absence of any phosphane or nitrogen ligands and
is highly regioselective and stereoselective for a wide variety combination of aldehydes and 1,3-dienes:
e.g., isoprene and benzaldehyde combine to give a mixture of anti- and syn-1-phenyl-3-methyl-4-penten-
1-ol (2.2) in a ratio of 15:1 in 90% yield. Under the conditions, sterically congested aliphatic aldehydes and
ketones show low yields. In such cases, diethylzinc serves as a substitute for triethylborane and yields the
expected products in good yields with similarly high regio- and stereoselectivity. 1,3-Cyclohexadiene is
one exception among 24 kinds of dienes examined and undergoes allylation (not homoallylation) selectively.
Introduction
only a limited number of homoallylation reaction regarding the
nickel8 and other transition metal catalyses9 have been reported
so far. This is probably owing to the difficult availability and
the low nucleophilicity of homoallylic transition metal species.
Organonickel complexes are distinctive in their nucleophilic
reactivity from organometal complexes of the other group 10
elements.1 Nucleophilic allylation of carbonyl compounds2 and
alkyl halides3 with π-allyl nickels has proved to be particularly
useful and has been utilized widely for the synthesis of natural
and unnatural products. Unfortunately, however, this methodol-
ogy requires a stoichiometric amount of nickel.
Recently, useful versions of nickel-catalyzed allylation and
vinylation of aldehydes with 1,3-dienes4 and alkynes,5 allenes,6
and alkenes7 have been developed, which provide useful access
to homoallyl alcohols and allyl alcohols, respectively.1a,b
Compared with the catalytic allylation and vinylation, however,
In 1998, we disclosed for the first time that Ni(acac)2 [acac
) acetylacetonato] was able to promote the catalytic homoal-
lylation of benzaldehyde with a variety of 1,3-dienes in the
presence of triethylborane, stereoselectively yielding bis-ho-
moallyl alcohols anti-2 (eq 1).10
† Graduate School of Science and Technology, Nagasaki University.
(1) (a) Tamaru, Y., Ed. Modern Organic Chemistry; Wiley-VCH: Weinheim,
2005. (b) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890-3908.
(c) Tsuji, J. Transition Metal Regents and Catalysts; Wiley & Sons:
Chichester, 2000. (d) Davies, S. G. Organotransition Metal Chemistry:
Application to Organic Synthesis; Pergamon: Oxford, 1982; Chapter 6.
(2) Semmelhack, M. F. Organic Reactions; Wiley: New York, 1972; Vol.
19, Chapter 2.
(5) (a) Knapp-Reed, B.; Mahandru, G. M.; Montgomery, J. J. Am. Chem. Soc.
2005, 127, 13156-13157. (b) Mahandru, G. M.; Liu, G.; Montgomery, J.
J. Am. Chem. Soc. 2004, 126, 3698-3699. (c) Patel, S. J.; Jamison, T. F.
Angew. Chem., Int. Ed. 2004, 43, 3941-3944. (d) Miller, K. M.;
Lanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2004,
126, 4130-4131.
(3) (a) Hegedus, L. S.; Varaprath, S. Organometallics 1982, 1, 259-263. (b)
Semmelhack, M. F.; Wu, E. S. C. J. Am. Chem. Soc. 1976, 98, 3384-
3386.
(6) (a) Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320-7321.
(b) Montgomery, J.; Song, M. Org. Lett. 2002, 4, 4009-4011.
(7) Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 14194-14195.
(8) Catalytic with respect to Ni: (a) Sato, Y.; Takimoto, M.; Mori, M. J. Am.
Chem. Soc. 2000, 122, 1624-1634. Stoichiometric with respect to Ni: (b)
Sato, Y. Takimoto, M.; Mori, M. Synlett 1997, 734-736. (c) Sato, Y.;
Takimoto, M.; Mori, M. Tetrahedron Lett. 1996, 37, 887-890.
(9) Catalytic with respect to Rh: Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J.
Am. Chem. Soc. 2006, 128, 718-719 and references therein. (b) Jang, H.-
Y.; Krische, M. J. Eur. J. Org. Chem. 2004, 3953-3958. Stoichiometric
with respect to Zr: (b) Yasuda, H.; Tatsumi, K.; Nakamura, A. Acc. Chem.
Res. 1985, 18, 120-126. (c) Erker, G.; Engel, K.; Atwood, J. L.; Hunter,
W. E. Angew. Chem., Int. Ed. Engl. 1983, 22, 494-495. (d) Erker, G.;
Dorf, U. Angew. Chem., Int. Ed. Engl. 1983, 22, 777-778. (e) Bertelo, C.
A.; Schwartz, J. J. Am. Chem. Soc. 1976, 98, 262-264.
(4) (a) Kojima, K.; Kimura, M.; Tamaru, Y. Chem. Commun. 2005, 4717-
4719. (b) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am. Chem. Soc.
2005, 127, 201-209. (c) Kimura, M.; Kojima, K.; Inoue, T.; Tamaru, Y.
Synthesis 2004, 3089-3091. (d) Ezoe, A.; Kimura, M.; Inoue, T.; Mori,
M.; Tamaru, Y. Angew. Chem., Int. Ed. 2002, 41, 2784-2786. (e) Sato,
Y.; Saito, N.; Mori, M. J. Org. Chem. 2002, 67, 9310-9317. (f) Shibata,
K.; Kimura, M.; Kojima, K.; Tanaka, S.; Tamaru, Y. J. Organomet. Chem.
2001, 624, 348-353. (g) Kimura, M.; Shibata, K.; Koudahashi, Y.; Tamaru,
Y. Tetrahedron Lett. 2000, 41, 6789-6793. (h) Kimura, M.; Matsuo, S.;
Shibata, K.; Tamaru, Y. Angew. Chem., Int. Ed. 1999, 38, 3386-3388. (i)
Sato, Y.; Saito, N.; Mori, M. Tetrahedron 1998, 54, 1153-1168. (j)
Takimoto, M.; Hiraga, Y.; Sato, Y.; Mori, M. Tetrahedron Lett. 1998, 39,
4543-4546. (k) Sato, Y.; Takimoto, M.; Hayashi, K.; Katsuhara, T.; Takagi,
K.; Mori, M. J. Am. Chem. Soc. 1994, 116, 9771-9772.
(10) Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc. 1998,
120, 4033-4034.
9
10.1021/ja0608904 CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 8559-8568
8559