Chemistry of Heterocyclic Compounds 2019, 55(9), 956–963
6. Sakai, H.; Konno, K.; Murata, H. Appl. Phys. Lett. 2009, 94,
λ 0.71069 Å, ω-scanning with step 1°). The unit cell
073304.
parameters were refined using all collected spots after the
integration process. The data were not corrected for
absorption.
7. Singh, H.; Singh, H.; Sharma, S.; Singh Bedi, P. M.
Heterocycles 2015, 91, 2043.
8. Gensicka-Kowalewska, M.; Cholewiński, G.; Dzierzbicka, K.
RSC Adv. 2017, 7, 15776.
9. Makhaeva, G. F.; Lushchekina, S. V.; Boltneva, N. P.;
Serebryakova, O. G.; Rudakova, E. V.; Ustyugov, A. A.;
Bachurin, S. O.; Shchepochkin, A. V.; Chupakhin, O. N.;
Charushin, V. N.; Richardson, R. J. Bioorg. Med. Chem.
2017, 25, 5981.
10. Sedláček, O.; Hrubý, M.; Studenovský, M.; Větvička, D.;
Svoboda, J.; Kaňková, D.; Kovář, J.; Ulbrich, K. Bioorg.
Med. Chem. 2012, 20, 4056.
11. Graham, L. A.; Suryadi, J.; West, T. K.; Kucera, G. L.;
Bierbach, U. J. Med. Chem. 2012, 55, 7817.
12. Tonelli, M.; Vettoretti, G.; Tasso, B.; Novelli, F.; Boido, V.;
Sparatore, F.; Busonera, B.; Ouhtit, A.; Farci, P.; Blois, S.;
Giliberti, G.; La Colla, P. Antiviral Res. 2011, 91, 133.
13. Kumar, A.; Srivastava, K.; Kumar, S. R.; Puri, S. K.;
Chauhan, P. M. S. Bioorg. Med. Chem. Lett. 2009, 19, 6996.
14. Nguyen, T.; Sakasegawa, Y.; Doh-ura, K.; Go, M.-L. Eur. J.
Med. Chem. 2011, 46, 2917.
Structures 1, 4, 10, 11, 18–21, 23, 24, 27, and 31 were
solved by direct methods with the SHELX97 program
package.52 Structure 11 was solved using Olex2 with the
Superflip structure solution program by charge flipping.53
All the structures were refined by full-matrix least squares
on F2 using ShelXL97. All the non-hydrogen atoms were
refined with anisotropic temperature factors. The H atoms
at the C(sp3)-9 atoms in the dihydroazine rings were solved
and refined independently in isotropic approximation. All
other H atoms were calculated with AFIX and were
included in the refinement at "riding" model with a
common isotropic temperature factor. Crystallographic data
of the investigated compounds have been deposited at the
Cambridge Crystallographic Data Center (deposits CCDC
1479454 for compound 1, CCDC 1479456 for compound
4, CCDC 1479453 for compound 10, CCDC 1896716 for
compound 11, CCDC 165508 for compound 18, CCDC
929423 for compound 19, CCDC 929424 for compound
20, CCDC 929426 for compound 21, CCDC 929427 for
compound 23, CCDC 929428 for compound 24, CCDC
1896715 for compound 27, CCDC 1896717 for compound
31).
Thermodynamic and BDE calculations. All the calcu-
lations were carried out using the Gaussian 09 software.54
Optimization of the structures (opt) was carried out until
the first local energy minimum by a consecutive use of
HF/3-21, HF/6-31G(d), DFT-B3LYP/6-31G(d) bases (for
compounds containing sulfur and phosphorus, the last used
basis was DFT-B3LYP/6-31G(d,p)). A check for the global
minimum was not conducted. The calculation of the
thermodynamic parameters (freq) was carried out either on
DFT-B3LYP/6-31G(d) basis or on DFT-B3LYP/6-31G(d,p)
one (for S- and P-containing compounds). The bases used
for BDE calculations are assigned to the average accuracy
calculations.
15. Sondhi, S. M.; Singh, N.; Lahoti, A. M.; Bajaj, K.; Kumar, A.;
Lozach, O.; Meijer, L. Bioorg. Med. Chem. 2005, 13, 4291.
16. Zhu, X.-Q.; Deng, F.-H.; Yang, J.-D.; Li, X.-T.; Chen, Q.;
Lei, N.-P.; Meng, F.-K.; Zhao, X.-P.; Han, S.-H.; Hao, E.-J.;
Mu, Y.-Y. Org. Biomol. Chem. 2013, 11, 6071.
17. Kil, H. J.; Lee, I.-S. H. J. Phys. Chem. A 2009, 113, 10704.
18. Hernán-Gómez, A.; Herd, E.; Uzelac, M.; Cadenbach, T.;
Kennedy, A. R.; Borilovic, I.; Aromí, G.; Hevia, E.
Organometallics 2015, 34, 2614.
19. Hyodo, I.; Tobisu, M.; Chatani, N. Chem. Commun. 2012, 48,
308.
20. Lian, Y.; Hummel, J. R.; Bergman, R. G.; Ellman, J. A.
J. Am. Chem. Soc. 2013, 135, 12548.
21. Huang, Z.; Yang, Y.; Xiao, Q.; Zhang, Y.; Wang, J. Eur.
J. Org. Chem. 2012, 33, 6586.
22. Rogness, D. C.; Larock, R. C. J. Org. Chem. 2010, 75, 2289.
23. Tsvelikhovsky, D.; Buchwald, S. L. J. Am. Chem. Soc. 2010,
132, 14048.
24. Singh, N. P.; Kumar, R.; Prasad, D. N.; Sharma, S.; Silakari, O.
Int. J. Biol. Chem. 2011, 5, 193.
25. Metal Free C-H Functionalisation of Aromatics. Nucleophilic
Displacement of Hydrogen; Charushin, V. N.; Chupakhin, O. N.,
Eds.; Springer: Cham, 2014.
The research was financially supported by the Russian
Foundation for Basic Research (research project
No. 18-33-00124).
Analytical studies were carried out using equipment of
the Center for Joint Use ''Spectroscopy and Analysis of
Organic Compounds'' at the Postovsky Institute of Organic
Synthesis of the Russian Academy of Sciences (Ural Branch).
26. Terrier, F. Modern Nucleophilic Aromatic Substitution;
Wiley-VCH: Weinheim, 2013.
27. Chen, Q.; Leon, T.; Knochel, P. Angew. Chem., Int. Ed. 2014,
53, 8746.
28. Utepova, I. A.; Trestsova, M. A.; Chupakhin, O. N.;
Charushin, V. N.; Rempel, A. A. Green Chem. 2015, 17,
4401.
29. Chupakhin, O. N.; Charushin, V. N. Tetrahedron Lett. 2016,
57, 2665.
References
1. Grimsdale, C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.;
Holmes, A. B. Chem. Rev. 2009, 109, 897.
2. Katritzky, A. R.; Ramsden, C. A.; Joule, J. A.; Zhdankin, V. V.
Handbook of Heterocyclic Chemistry; Elsevier: Amsterdam,
2010, 3rd ed.
30. Chupakhin, O. N.; Baklykov, V. G.; Klyuev, N. A.;
Matern, A. I. Chem. Heterocycl. Compd. 1989, 25, 904.
[Khim. Geterotsikl. Soedin. 1989, 1083.]
31. Fukuzumi, S.; Tokuda, Y.; Kutano, T.; Okamoto, T.; Otera, J.
J. Am. Chem. Soc. 1993, 115, 8960.
3. Perkowski, A. J.; Nicewicz, D. A. J. Am. Chem. Soc. 2013,
135, 10334.
32. Gallardo, I.; Guirado, G. Eur. J. Org. Chem. 2008, 2463.
33. Makosza, M. Synthesis 2011, 2341.
4. Raskosova, A.; Stößer, R.; Abraham, W. Chem. Commun.
2013, 49, 3964.
34. Utepova, I. A.; Lakhina, A. E.; Varaksin, M. V.; Kovalev, I. S.;
Rusinov, V. L.; Slepukhin, P. A.; Kodess, M. I.; Chupakhin, O. N.
Russ. Chem. Bull., Int. Ed. 2008, 57, 2156. [Izv. Akad. Nauk,
Ser. Khim. 2008, 2116.]
5. Kotani, H.; Ohkubo, K.; Crossley, M. J.; Fukuzumi, S. J. Am.
Chem. Soc. 2011, 133, 11092.
962