pubs.acs.org/joc
interest, the substrates are limited to some aliphatic ketones2
Reversal of Diastereoselectivity in Reactions of the
Trifluoroacetaldehyde Ethyl Hemiacetal with
Enamines and Imines: Metal-Free, Complementary
anti- and syn-Selective Synthesis of 4,4,4-Trifluoro-
1-aryl-3-hydroxy-2-methyl-1-butanones
or aldehydes,3 and there is no example that involves aromatic
ethyl ketones.4
In recent investigations, we have explored reactions of the
ethyl hemiacetal of trifluoroacetaldehyde (CF3CHO) with
various enamines and imines derived from methyl ketones as
part of a regio-5,6 and enantio-controlled7 asymmetric meth-
ods for the synthesis of 1-aryl- and 1-alkyl-4,4,4-trifluoro-3-
hydroxy-1-butanones. Furtheremore, recently, we reported
the L-proline-catalyzed complementary syn- and anti-selective
synthesis of 2-(2,2,2-trifluoro-1-hydroxyethyl)cycloalkanones
via the direct aldol reaction of CF3CHO hemiacetal with
aliphatic cyclic ketones.8 Below, we describe the first metal-
free, complementary anti- and syn-selective method to pre-
pare 4,4,4-trifluoro-1-aryl-3-hydroxy-2-methyl-1-butanones
by the reactions of CF3CHO hemiacetal with enamines or
imines, derived from aromatic ethyl ketones, which should
have a significant impact and basic information for the organo-
catalytic direct diastereoselective aldol reaction of aro-
matic ethyl ketones, leading to R-methylated aldol products
(Scheme 1).
Kazumasa Funabiki,* Kei Matsunaga, Hiroshi Gonda,
Hitoshi Yamamoto, Takao Arima, Yasuhiro Kubota, and
Masaki Matsui
Department of Materials Science and Technology, Faculty of
Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193,
Japan
Received September 3, 2010
SCHEME 1. Complementary anti- or syn-Selective Synthesis of
4,4,4-Trifluoro- and 4,4-Difluoro-1-aryl-3-hydroxy-2-methyl-1-
butanones (4, 5)
A complete reversal of diastereoselectivity was observed
for reactions of the trifluoroacetaldehyde ethyl hemiacetal
with enamines and imines, derived from propiophenones,
that produce 4,4,4-trifluoro-1-aryl-3-hydroxy-2-methyl-
1-butanones. This process serves as the first reliable,
metal-free, complementary anti- and syn-selective method
to prepare 4,4,4-trifluoro-1-aryl-3-hydroxy-2-methyl-1-
butanones.
The development of diastereo- and enantioselective meth-
ods for the synthesis of β-hydroxy-R-methylated aldol prod-
ucts based on aldol reactions continues to be of crucial
importance in organic syntheses, since these units appear in
many natural products such as macrolide antibiotics. For
this purpose, many complementary anti- and syn-selective
aldol reactions that use metal-enolates to give the β-hydroxy-
R-alkylated ketones, esters, and amides have been well studied.1
Although metal-free or organocatalytic complementary dia-
stereoselective direct aldol reactions are also of increasing
(3) For recent examples of R-alkylated aldehydes, syn-adducts, see: (a) Li, J.;
Fu, N.; Li, X.; Luo, S.; Cheng, J.-P. J. Org. Chem. 2010, 75, 4501. For anti-
adductts, see: (b) Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan,
D. W. C. Angew. Chem., Int. Ed. 2004, 43, 2152.
(4) For organocatalytic asymmetric direct aldol reaction of aromatic
methyl ketones, see: (a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.;
Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983. (b) Mei, K.; Zhang, S.;
He, S.; Li, P.; Jin, M.; Xue, F.; Luo, G.; Zhang, H.; Song, L.; Duan, W.;
Wang, W. Tetrahedron Lett. 2008, 49, 2681. (c) Carpenter, R. D.; Fettinger,
J. C.; Lam, K. S.; Kurth, M. J. Angew. Chem., Int. Ed. 2008, 47, 6407.
(5) For methyl ketones, see: (a) Funabiki, K.; Nojiri, M.; Matsui, M.;
Shibata, K. Chem. Commun. 1998, 2051. (b) Funabiki, K.; Matsunaga., K.;
Matsui, M.; Shibata, K. Synlett 1999, 1477. (c) Funabiki, K.; Matsunaga, K.;
Nojiri, M.; Hashimoto, W.; Yamamoto, H.; Matsui, M.; Shibata, K. J. Org.
Chem. 2003, 68, 2853. For aldehydes, see: (d) Funabiki, K.; Furuno, K.;
Sato, F.; Gonda, H.; Kubota, Y.; Matsui, M. Chem. Lett. 2010, 39, 410.
(6) Funabiki, K. In Fluorine-Containing Synthons; Soloshonok, V., Ed.;
ACS Symposium Series 911; Oxford University Press/American Chemical
Society: Washington, DC, 2005; p 342.
(1) A recent book, see: Modern Aldol Reactions;Mahrwald, R., Ed.;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004.
(2) For recent examples of R-methyl-, chloro-, and fluoro- alkoxy-, hydroxy-
aliphatic ketones, syn-adducts, see: (a) Xu, X.-Y.; Wang, Y.-Z.; Gong, L.-Z.
Org. Lett. 2007, 9, 4247. (b) Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.;
Barbas, C. F., III J. Am. Chem. Soc. 2007, 129, 288. (c) Ramasastry, S. S. V.;
Albertshofer, K.; Utsumi, N.; Tanaka, F.; Barbas, C. F., III Angew. Chem., Int.
Engl. 2007, 46, 5572. (d) Utsumi, N.; Imai, M.; Tanaka, F.; Ramasastry, S. S. V.;
Barbas, C. F., III Org. Lett. 2007, 9, 3445. (e) Teo, Y.-C.; Chua, G.-L.; Ong
C.-Y.; Poh, C.-Y. Tetrahedron Lett. 2009, 50, 4854. For anti-products, see:
(f) Enders, D.; Grondal, C. Angew. Chem., Int. Ed. 2005, 44, 1210. (g) Suri, J. T.;
Ramachary, D. B.; Barbas, C. F., III Org. Lett. 2005, 7, 1383. (h) Ibrahem, I.;
Cordova, A. Tetrahedron Lett. 2005, 46, 3363.
(7) Funabiki, K.; Hashimoto, W.; Matsui, M. Chem. Commun. 2004,
2056.
(8) (a) Funabiki, K.; Yamamoto, H.; Nagaya, H.; Matsui, M. Tetra-
hedron Lett.2006, 47, 5507. (b) Funabiki, K.; Matsui, M. Current Fluoroorganic
Chemistry; Soloshonok,V., Mikami, K., Yamazaki, T., Welch, J. T., Honek, J. F.,
Eds.; ACS Symposium Series 949; Oxford University Press/American Chemical
Society: Washington, DC, 2007; p 141. Saito and Yamamoto also reported the
same results of chloral with cycloalkanones; see ref 4a.
DOI: 10.1021/jo101733j
r
Published on Web 12/03/2010
J. Org. Chem. 2011, 76, 285–288 285
2010 American Chemical Society