Inorganic Chemistry
Article
S. F.; Maji, S.; Ramu, R.; Chan, S. I. Developing an efficient catalyst
for controlled oxidation of small alkanes under ambient conditions.
Catal. Sci. Technol. 2014, 4, 930−935. (c) Liu, C. C.; Mou, C. Y.; Yu,
S. S. F.; Chan, S. I. Heterogeneous formulation of the tricopper
complex for efficient catalytic conversion of methane into methanol at
ambient temperature and pressure. Energy Environ. Sci. 2016, 9,
1361−1374. (d) Smeets, P. J.; Hadt, R. G.; Woertink, J. S.;
Vanelderen, P.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I.
Oxygen Precursor to the Reactive Intermediate in Methanol Synthesis
by Cu-ZSM-5. J. Am. Chem. Soc. 2010, 132, 14736−14738.
(e) Woertink, J. S.; Smeets, P. J.; Groothaert, M. H.; Vance, M. A.;
Sels, B. F.; Schoonheydt, R. A.; Solomon, E. I. A [Cu2O]2+ core in Cu-
ZSM-5, the active site in the oxidation of methane to methanol. Proc.
Natl. Acad. Sci. U. S. A. 2009, 106, 18908−18913. (f) Grundner, S.;
Markovits, M. A. C.; Li, G.; Tromp, M.; Pidko, E. A.; Hensen, E. J.
M.; Jentys, A.; Sanchez-Sanchez, M.; Lercher, J. A. Single-site
trinuclear copper oxygen clusters in mordenite for selective
conversion of methane to methanol. Nat. Commun. 2015, 6, 7546.
(12) (a) Sorokin, A. B.; Kudrik, E. V.; Bouchu, D. Bio-inspired
oxidation of methane in water catalyzed by N-bridged diiron
phthalocyanine complex. Chem. Commun. 2008, 2562−2564.
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Author Contributions
⊥S.A.I. and C.C. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the French National Research
Agency (ANR, France, OH Risque Grant ANR-14-OHRI-
0015-03). Lhoussain Khrouz and Michel Giorgi are acknowl-
edged for the EPR measurements and X-ray structure
determination, respectively.
̇ ̈
(b) Isç i, U.; Faponle, A. S.; Afanasiev, P.; Albrieux, F.; Briois, V.;
Ahsen, V.; Dumoulin, F.; Sorokin, A. B.; de Visser, S. P. Site-selective
formation of an iron(IV)-oxo species at the more electron-rich iron
atom of heteroleptic μ-nitrido diiron phthalocyanines. Chem. Sci.
2015, 6, 5063−5075. (c) Quesne, M. G.; Senthilnathan, D.; Singh, D.;
Kumar, D.; Maldivi, P.; Sorokin, A. B.; de Visser, S. P. Origin of the
enchanced reactivity of μ-nitrido-bridged diiron(IV)-oxo porphyr-
inoid complexes over cytochrome P450 Compound I. ACS Catal.
2016, 6, 2230−2243. (d) Afanasiev, P.; Sorokin, A. B. μ-Nitrido
diiron macrocyclic platform: particular structure for particular
catalysis. Acc. Chem. Res. 2016, 49, 583−593.
REFERENCES
■
(1) Schwach, P.; Pan, X.; Bao, X. Direct conversion of methane to
value-added chemicals over heterogeneous catalysts: challenges and
prospects. Chem. Rev. 2017, 117, 8497−8520.
(2) Kondratenko, E. V.; Peppel, T.; Seeburg, D.; Kondratenko, V. A.;
Kalevaru, N.; Martin, A.; Wohlrab, S. Methane conversion into
different hydrocarbons or oxygenates: current status and future
perspectives in catalyst development and reactor operation. Catal. Sci.
Technol. 2017, 7, 366−381.
(3) Sazinsky, M. H.; Lippard, S. J. Methane Monooxygenase:
functionalizing methane at iron and copper. Met. Ions Life Sci. 2015,
15, 205−256.
(4) Wang, V. C.-C.; Maji, S.; Chen, P. P.-Y.; Lee, H. K.; Yu, S. S.-F.;
Chan, S. I. Alkane oxidation: methane monooxygenases: related
enzymes, and their biomimetics. Chem. Rev. 2017, 117, 8574−8621.
(5) (a) Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J. L.;
(13) Kudrik, E. V.; Afanasiev, P.; Alvarez, L. X.; Blondin, G.;
́
Dubourdeaux, P.; Clemancey, M.; Latour, J.-M.; Bouchu, D.;
Albrieux, F.; Nefedov, S. E.; Sorokin, A. B. An N-bridged high-valent
diiron-oxo species on a porphyrin platform that can oxidize methane.
Nat. Chem. 2012, 4, 1024−1029.
̆
(14) Dinh, K. T.; Sullivan, M. M.; Serna, P.; Meyer, R. J.; Dinca, M.;
́
Roman-Leshkov, Y. Viewpoint on the partial oxidation of methane to
methanol using Cu- and Fe-exchanged zeolites. ACS Catal. 2018, 8,
8306−8313.
(15) (a) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W.
Molecular recognition in the selective oxygenation of saturated C-H
bonds by a dimanganese catalyst. Science 2006, 312, 1941−1943.
(b) Olivo, G.; Farinelli, G.; Barbieri, A.; Lanzalunga, O.; Di Stefano,
S.; Costas, M. Supramolecular recognition allows remote, site-
selective C-H oxidation of methylenic sites in linear Amines. Angew.
Chem., Int. Ed. 2017, 56, 16347−16351.
(16) Belvedere, S.; Breslow, R. Regioselective Oxidation of Steroids
by a Manganese Porphyrin Carrying Metal Coordinating Groups.
Bioorg. Chem. 2001, 29, 321−331.
(17) Breslow, R.; Huang, Y.; Zhang, X.; Yang, J. An artificial
cytochrome P450 that hydroxylates unactivated carbons with regio-
and stereoselectivity and useful catalytic turnovers. Proc. Natl. Acad.
Sci. U. S. A. 1997, 94, 11156−11158.
(18) Vidal, D.; Olivo, G.; Costas, M. Controlling Selectivity in
Aliphatic C−H Oxidation through Supramolecular Recognition.
Chem. - Eur. J. 2018, 24, 5042−5054.
(19) Perraud, O.; Sorokin, A. B.; Dutasta, J.-P.; Martinez, A.
Oxidation of cycloalkanes by H2O2 using a copper−hemicryptophane
complex as a catalyst. Chem. Commun. 2013, 49, 1288−1290.
(20) Zhang, D.; Jamieson, K.; Guy, L.; Gao, G.; Dutasta, J. P.;
Martinez, A. Tailored oxido-vanadium(V) cage complexes for
selective sulfoxidation in confined spaces. Chem. Sci. 2017, 8, 789−
794.
Muller, J.; Lippard, S. J. Dioxygen Activation and Methane
̈
Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two
Irons and Three Proteins. Angew. Chem., Int. Ed. 2001, 40, 2782−
2807. (b) Baik, M.-H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J.
Mechanistic Studies on the Hydroxylation of Methane by
MethaneMonooxygenase. Chem. Rev. 2003, 103, 2385−2420.
(6) Lawton, T. J.; Rosenzweig, A. C. Methane-oxidizing enzymes: an
upstream problem in biological gas-to-liquids conversion. J. Am.
Chem. Soc. 2016, 138, 9327−9340.
(7) Ross, M. O.; Rosenzweig, A. C. A tale of two methane
monooxygenases. JBIC, J. Biol. Inorg. Chem. 2017, 22, 307−319.
(8) Lee, S. J.; McCormick, M. S.; Lippard, S. J.; Cho, U. S. Control
of substrate access to the active site in methane monooxygenase.
Nature 2013, 494, 380−384.
(9) Tshuva, E. Y.; Lippard, S. J. Synthetic models for non-heme
carboxylate-bridged diiron metalloproteins: strategies and tactics.
Chem. Rev. 2004, 104, 987−1012.
(10) Friedle, S.; Reisner, E.; Lippard, S. J. Current challenges of
modeling diiron enzyme active sites for dioxygen activation by
biomimetic synthetic complexes. Chem. Soc. Rev. 2010, 39, 2768−
2779.
(11) (a) Chan, S. I.; Lu, Y.-J.; Nagababu, P.; Maji, S.; Hung, M.-C.;
Lee, M. M.; Hsu, I.-J.; Minh, P. D.; Lai, J. C.-H.; Ng, K. Y.;
Ramalingam, S.; Yu, S. S.-F.; Chan, M. K. Efficient oxidation of
methane to methanol by dioxygen mediated by tricopper clusters.
Angew. Chem., Int. Ed. 2013, 52, 3731−3735. (b) Nagababu, P.; Yu, S.
(21) (a) Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K.
N.; Toste, F. D. A supramolecular microenvironment strategy for
transition metal catalysis. Science 2015, 350, 1235−1238. (b) Shenoy,
́
S. R.; Pinacho Crisostomo, F. R.; Iwasawa, T.; Rebek, J., Jr.
H
Inorg. Chem. XXXX, XXX, XXX−XXX