CrystEngComm
Paper
In order to determine the adsorption ability of versatile
organic solvent molecules, the acetonitrile-free species,
ijCu3L4]IJClO4)6Ĵ19H2O, was immersed in chloroform, tetrahy-
drofuran (THF), and acetone. Thus, the incorporated solvent
molecules could be checked by 1H NMR in Me2SO-d6 even
though the 3D coordination skeletons were dissociated in
Me2SO-d6. Within 24 h, solvent adsorption was accomplished
(Fig. S10, ESI†) yielding ijCu3L4]IJClO4)6Ĵ19H2OĴ12CHCl3,
ijCu3L4]IJClO4)6Ĵ19H2OĴ13THF, and ijCu3L4]IJClO4)6Ĵ19H2OĴ7Me2CO,
respectively. The IR spectra corresponding to the species'
skeleton remained virtually unchanged, suggesting that the
3D coordination network is retained after solvent adsorption
(Fig. 5). The same experiment employing the acetonitrile-free
species ijCu3L4]IJBF4)6Ĵ16H2O produced ijCu3L4]IJBF4)6Ĵ16H2OĴ7CHCl3,
ijCu3L4]IJBF4)6Ĵ16H2OĴ8THF, and ijCu3L4]IJBF4)6Ĵ16H2OĴ4acetone,
respectively (Fig. 5 and S11, ESI†). Further, the acetonitrile-
desolvated species ijCu3L4]IJClO4)6Ĵ19H2O and ijCu3L4]IJBF4)6Ĵ16H2O
were immersed in a mixture of chloroform, tetrahydrofuran,
and acetone IJv/v/v = 1 : 1 : 1) for 1 day, resulting in the incor-
poration of chloroform, tetrahydrofuran, and acetone in
5 : 2 : 1 and 3 : 2 : 1 ratios, respectively (Fig. S12, ESI†). This
might be ascribed to the polarity of the solvent molecules
rather than the coordinating ability or size effects.
4 H. Chun, D. N. Dybtsev, H. Kim and K. Kim, Chem. – Eur. J.,
2005, 11, 3521–3529.
5 K. Uemura, R. Matsuda and S. Kitagawa, J. Solid State Chem.,
2005, 178, 2420–2429.
6 P. J. Steel, Acc. Chem. Res., 2005, 38, 243–250.
7 C. J. Jones, Chem. Soc. Rev., 1998, 27, 289–299.
8 M. W. Hosseini, Acc. Chem. Res., 2005, 38, 313–323.
9 D. Bradshow, J. B. Claridge, E. J. Cussen, T. J. Prior and M. J.
Rosseinsky, Acc. Chem. Res., 2005, 38, 273–282.
10 A. Clough, S.-T. Zheng, X. Zhao, Q. Lin, P. Feng and X. Bu,
Cryst. Growth Des., 2014, 14, 897–900.
11 G. R. Desiraju, in The crystal as a supramolecular entity:
perspectives in supramolecular chemistry, John Wiley & Sons,
New York, 1996, vol. 2.
12 M. Du, X.-H. Bu, Z. Huang, S.-T. Chen and Y.-M. Guo, Inorg.
Chem., 2003, 42, 552–559.
13 M. Du, X.-H. Bu, Y.-M. Cuo, J. Ribas and C. Diaz, Chem.
Commun., 2002, 2550–2551.
14 S. Y. Moon, E. Kim, T. H. Noh, Y.-A. Lee and O.-S. Jung,
Dalton Trans., 2013, 42, 13974–13980.
15 T. H. Noh, E. Heo, K. H. Park and O.-S. Jung, J. Am. Chem.
Soc., 2011, 133, 1236–1239.
16 M. Fujita, N. Fujita, K. Ogura and K. Yamagichi, Nature,
1999, 400, 52–55.
17 S. Ghosh and P. S. Mukherjee, J. Org. Chem., 2006, 71,
8412–8416.
Conclusions
−
−
Reactions of CuX2 (X− = ClO4 and BF4 ) with a new 1,3,5-tris-
IJisonicotinoyloxymethyl)benzene (L) ligand give rise to
unusual 3D, ijCu3L4IJCH3CN)6]IJX)6 coordination networks,
18 D. Moon, S. Kang, J. Park, K. Lee, R. P. John, H. Won, G. H.
Seong, Y. S. Kim, H. Rhee and M. S. Lah, J. Am. Chem. Soc.,
2006, 128, 3530–3531.
19 H. Lee, T. H. Noh and O.-S. Jung, Angew. Chem., Int. Ed.,
2013, 52, 11790–11795.
20 H. Lee, T. H. Noh and O.-S. Jung, CrystEngComm, 2013, 15,
1832–1835.
21 W. Hong, H. Lee, T. H. Noh and O.-S. Jung, Dalton Trans.,
2013, 42, 11092–11099.
22 S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K.
Mochizuki, Y. Kinoshita and S. Kitagawa, J. Am. Chem. Soc.,
2007, 129, 2607–2614.
23 A. Puzari and J. B. Baruah, J. Mol. Catal. A: Chem., 2002, 187,
149–162.
24 L. M. Berreau, S. Mahapatra, J. A. Halfen, R. P. Hauser, V. G.
Young Jr. and W. B. Tolman, Angew. Chem., Int. Ed.,
1999, 38, 207–210.
¨
new topology of the Schlafli point symbol
with
a
{4Ĵ82}4{42Ĵ82Ĵ102}2{84Ĵ122}. The 3D network basically has oval-
shaped pores that are useful for heterogeneous catalysis and
adsorption. The catalytic oxidation rates of the catechols to
o-benzoquinone were in the order 3,5-DBuCat > 4-BuCat >
4-ClCat, due to the electron-donating ability of the substitu-
ents. The molecular-accessible spaces adsorbed the solvents
reversibly in the order CHCl3 > THF > Me2CO. A further
study on this series of coordination frameworks based on the
N-donor tridentate ligand is under way, the results of which
could offer a systematic strategy for the design and construc-
tion of MOFs with new topologies, not to mention potential
applications in gas separation or adsorption.
25 P. Gentschev, N. Möller and B. Krebs, Inorg. Chim. Acta,
2000, 300–302, 442–452.
Acknowledgements
26 O. Das and T. K. Paine, Dalton Trans., 2012, 41,
11476–11481.
27 A. Biswas, L. K. Das, M. G. B. Drew, C. Diaz and A. Ghosh,
Inorg. Chem., 2012, 51, 10111–10121.
This work was supported by a grant from the National
Research Foundation of Korea (NRF) funded by the Korean
Government [MEST] (2013R1A2A2A07067841).
28 N. Oishi, Y. Nishida, K. Ida and S. Kida, Bull. Chem. Soc.
Jpn., 1980, 53, 2847–2850.
Notes and references
1 C. B. Aakeröy, N. R. Champness and C. Janiak,
CrystEngComm, 2010, 12, 22–43.
2 C. Mellot-Draznieks, J. Dutour and G. Ferey, Angew. Chem.,
Int. Ed., 2004, 43, 6290–6296.
29 G. M. Sheldrick, SADABS, Program for empirical absorption
correction of area detector data, University of Göttingen,
Germany, 1996.
30 G. M. Sheldrick, SHELXS-97, Program for solution of
crystal ctructures, University of Göttingen, Germany, 1997;
3 P. J. Stang and B. Olenyuk, Acc. Chem. Res., 1997, 30, 502–518.
This journal is © The Royal Society of Chemistry 2015
CrystEngComm