Inorganic Chemistry
1.2% and 50.7%, respectively. After oxidation was completed,
the catalyst could be retrieved from the solvent/oxidant/
substrate system by filtration. When the reaction was carried
out with the filtered catalyst, the conversion of cyclohexene was
low (68.1%) after 8 h of reaction (entry 6). The epoxidation
reaction with the solution at the end of a catalytic reaction gave
Communication
4
(c) Niu, J. Y.; Zhang, X. Q.; Yang, D. H.; Zhao, J. W.; Ma, P. T.; Kortz,
U.; Wang, J. P. Chem.Eur. J. 2012, 18, 6759−6762.
(
3) (a) Burgomaster, P. D.; Aldous, A.; Liu, H. X.; O’Connor, C. J.;
Zubieta, J. Cryst. Growth Des. 2010, 10, 2209−2218. (b) Li, F. Y.; Xu,
L. Dalton Trans. 2011, 40, 4024−4034. (c) Shestakova, P.; Absillis, G.;
Martin-Martinez, F. J.; Proft, F. D.; Willem, R.; Parac-Vogt, T. N.
Chem.Eur. J. 2014, 20, 5258−5270.
2
1% conversion (entry 7), which corresponded to the loss of
(
4) Kortz, U.; Jameson, G. B.; Pope, M. T. J. Am. Chem. Soc. 1994,
catalytic activity (26%) after the first run. In order to investigate
1
16, 2659−2660.
3
1
the stability of the catalyst, P NMR and IR spectra of the used
catalyst have been studied. The 3 P NMR spectrum only
contains two single peaks at 2.73 and 3.90 ppm attributed to
the central P atoms, indicating that the peripheral P atoms fall
off. The noticeable differences of the IR spectrum are in the
region between 1250 and 1500 cm . The results suggested that
the framework structure of the catalyst was partially
decomposed, and the skeleton of POMs was still retained. In
the cases of other cyclic alkenes (entries 8−9), 1-
methylcyclohexene gave 90.4% conversion and 40.7% selectiv-
ity. The catalyst system was applicable to aliphatic alkenes or
aromatic alkenes (entries 10−12), with selectivity of 2,3-
dimethyl-2-butene and trans-2-octene reaching to 81.5% and
(5) (a) Mayer, C. R.; Herson, P.; Thouvenot, R. Inorg. Chem. 1999,
1
38, 6152−6158. (b) Kortz, U.; Marquer, C.; Thouvenot, R.; Nierlich,
M. Inorg. Chem. 2003, 42, 1158−1162. (c) Mayer, C. R.; Herve, M.;
Lavanant, H.; Blais, J. C.; Secheresse, F. Eur. J. Inorg. Chem. 2004, 5,
73−977. (d) Driss, H.; Boubekeur, K.; Debbabi, M.; Thouvenot, R.
́
́
9
−1
Eur. J. Inorg. Chem. 2008, 23, 3678−3686. (e) Moll, H. E.; Dolbecq,
A.; Marrot, J.; Rousseau, G.; Haouas, M.; Taulelle, F.; Rogez, G.;
Wernsdorfer, W.; Keita, B.; Mialane, P. Chem.Eur. J. 2012, 18,
3
845−3849. (f) Moll, H. E.; Rousseau, G.; Dolbecq, A.; Oms, O.;
Marrot, J.; Haouas, M.; Taulelle, F.; Rivier
Lachkar, D.; Laco
te, E.; Keita, B.; Mialane, P. Chem.Eur. J. 2013, 19,
6753−6765.
̀
e, E.; Wernsdorfer, W.;
̂
(6) (a) Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457−2473.
(b) Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003, 16, 1977−
1
2
986. (c) Mizuno, N.; Yamaguchi, K.; Kamata, K. Coord. Chem. Rev.
005, 249, 1944−1956. (d) Maksimchuk, N. V.; Kovalenko, K. A.;
7
6.7%, respectively.
In summary, the S-shaped, zinc-containing, polyoxotung-
Arzumanov, S. S.; Chesalov, Y. A.; Melgunov, M. S.; Stepanov, A. G.;
state-incorporated ATMP has been synthesized by a simple
one-pot reaction. Compound 1 presents the first example of
incorporating functionalized triphosphonates into polyoxotung-
state rather than simply grafted on the surface. The catalysis of
Fedin, V. P.; Kholdeeva, O. A. Inorg. Chem. 2010, 49, 2920−2930.
7) (a) Marcoux, P. R.; Hasenknopf, B.; Vaissermann, J.; Gouzerh, P.
Eur. J. Inorg. Chem. 2003, 13, 2406−2412. (b) Santoni, M. P.; Pal, A.
K.; Hanan, G. S.; Proust, A.; Hasenknopf, B. Inorg. Chem. 2011, 50,
(
1
for alkene epoxidation has been investigated with a hydrogen
6
737−6745. (c) Lin, C. G.; Chen, W.; Long, D. L.; Cronin, L.; Song,
peroxide (H O ) oxidant in acetonitrile. The next work will
Y. F. Dalton Trans. 2014, 43, 8587−8590.
2
2
concentrate on improving the activity and selectivity for alkene
epoxidation and the synthesis of the isostructural derivatives
with replacing the zinc atoms.
(8) (a) Ouellette, W.; Wang, G. B.; Liu, H. X.; Yee, G. T. Inorg.
Chem. 2009, 48, 953−963. (b) Yang, L.; Ma, P. T.; Zhou, Z.; Wang, J.
P.; Niu, J. Y. Inorg. Chem. 2013, 52, 8285−8287.
(
9) (a) Tantayakom, V.; Fogler, H. S.; Charoensirithavorn, P.;
Chavade, S. Cryst. Growth Des. 2005, 5, 329−335. (b) Ruiz-Agudo, E.;
ASSOCIATED CONTENT
Supporting Information
X-ray crystallograhic files (CIF), experiment sections, synthetic
discussion, additional physical measurements, catalytic proper-
■
Putnis, C. V.; Rodriguez-Navarro, C. Cryst. Growth Des. 2008, 8,
*
S
2
(
665−2673.
10) (a) Ritchie, C.; Boskovic, C. Cryst. Growth Des. 2010, 10, 488−
491. (b) Ritchie, C.; Speldrich, M.; Gable, R. W.; Sorace, L.; Kogerler,
̈
P.; Boskovic, C. Inorg. Chem. 2011, 50, 7004−7014. (c) Ritchie, C.;
Baslon, V.; Moore, E. G.; Reber, C.; Boskovic, C. Inorg. Chem. 2012,
5
(
2
(
2
(
1, 1142−1151.
11) Dumas, E.; Sassoye, C.; Smith, K. D.; Sevov, S. C. Inorg. Chem.
002, 41, 4029−4032.
12) Brown, I. D.; Altermatt, D. Acta Crystallogr. Sect. B 1985, 41,
44−247.
13) (a) Bassil, B. S.; Ibrahim, M.; Mal, S. S.; Suchopar, A.; Biboum,
AUTHOR INFORMATION
■
*
*
R. N.; Keita, B.; Nadjo, L.; Nellutla, S.; Tol, J. V.; Dalal, N. S.; Kortz,
U. Inorg. Chem. 2010, 49, 4949−4959. (b) Nambu, J. I.; Ueda, T.;
Guo, S. X.; Boasc, J. F.; Bond, A. M. Dalton Trans. 2010, 39, 7364−
Notes
The authors declare no competing financial interest.
7
373. (c) Gabb, David.; Pradeep, C. P.; Miras, H. N.; Mitchell, S. G.;
ACKNOWLEDGMENTS
■
Long, D. L.; Cronin, L. Dalton Trans. 2012, 41, 10000−10005.
(14) (a) Bonchio, M.; Carraro, M.; Scorrano, G.; Bagno, A. Ad. Synth.
Catal. 2004, 346, 648−654. (b) Berardi, S.; Carraro, M.; Sartorel, A.;
Modugno, G.; Bonchio, M. Isr. J. Chem. 2011, 51, 259−274.
(15) (a) Carraro, M.; Sandei, L.; Sartorel, A.; Scorrano, G.; Bonchio,
M. Org. Lett. 2006, 8, 3671−3674. (b) Berardi, S.; Bonchio, M.;
Carraro, M.; Conte, V.; Sartorel, A.; Scorrano, G. J. Org. Chem. 2007,
We gratefully acknowledge the National Natural Science
Foundation of China, Foundation of Education Department
of Henan Province, and Natural Science Foundation of Henan
Province for financial support.
REFERENCES
■
7
2, 8954−8957.
(
3
1) (a) Pope, M. T.; Muller, A. Angew. Chem., Int. Ed. 1991, 30, 34−
8. (b) Hill, L. M. R.; Abrahams, B. F.; Young, C. G. Chem.Eur. J.
2
008, 14, 2805−2810. (c) Zhang, Y.; Cao, R.; Guo, R. T.; Robinson,
H.; Papapoulos, S.; Wang, A. H.; Kubo, T.; Oldfield, E. J. Am. Chem.
Soc. 2009, 131, 5153−5162. (d) Long, D. L.; Tsunashima, R.; Cronin,
L. Angew. Chem., Int. Ed. 2010, 49, 1736−1758.
(
́
2) (a) Dolbecq, A.; Mialane, P.; Secheresse, F.; Keita, B.; Nadjo, L.
Chem. Commun. 2012, 48, 8299−8316. (b) Banerjee, A.; Bassil, B. S.;
Roschenthaler, G.-V.; Kortz, U. Chem. Soc. Rev. 2012, 41, 7590−7604.
̈
C
Inorg. Chem. XXXX, XXX, XXX−XXX