Fragmentation behavior of a thiourea-based cross-linker
Acknowledgements
[11] M. Karas, F. Hillenkamp. Laserdesorptionionizationofproteinswith
molecular masses exceeding 10,000 Da. Anal. Chem. 1988, 60, 2299.
[12] M. Q. M u¨ ller, C. Roth, N. Str a¨ ter, A. Sinz. Expression and purification
of the ligand-binding domain of peroxisome proliferator-activated
receptor alpha. Prot. Exp. Purif. 2008, 62, 185.
MQM is supported by the DFG Graduiertenkolleg 1026 ‘Conforma-
tional Transitions in Macromolecular Interactions’ at the Martin-
Luther-Universit a¨ t Halle-Wittenberg. AS gratefully acknowledges
financial support by the DFG and the BMBF (ProNet-T project),
MS and FD gratefully acknowledge financial support by the DFG.
[
13] S. E. Holroyd, P. Groves, M. S. Searle, U. Gerhard, D. H. Williams.
Rational design and binding of modified cell-wall peptides
to vancomycin-group antibiotics: factorising free energy
contributions to binding. Tetrahedron 1993, 49, 9171.
3
[
14] D. Hoppe, H. Follmann. 2-Thioxo-oxazolidine durch cycloaddition
von α-metallierten alkylisothiocyanaten an carbonylverbindungen.
Chem. Ber. 1976, 109, 3047.
Supporting information
Supporting information may be found in the online version of this
article.
[
15] P. Langer,
A. Bodtke.
Sequential
cyclizations
of
2-
isothiocyanatobenzonitrile with α-aminocarboxylic esters
and acids. Synlett 2003, 11, 1743.
[
16] S. Reyes, K. Burgess. On formation of thiohydantoins from amino
acids under acylation conditions. J. Org. Chem. 2006, 71, 2507.
17] A. B. Smith, S. S.-Y. Chen, F. C. Nelson, J. M. Reichert, B. A. Salvatore.
Total syntheses of (+)-acutiphycin and (+)-trans-20,21-
didehydroacutiphycin. J. Am. Chem. Soc. 1997, 119, 10935.
18] T. S. Rao, S. Nampalli, P. Sekher, S. Kumar. TFA-NHS as bifunctional
protecting agent: simultaneous protection and activation of amino
carboxylic acids. Tetrahedron Lett. 2002, 43, 7793.
19] M. Adamczyk, Y. Y. Chen, J. C. Gebler, D. D. Johnson, P. G. Mattingly,
J. A. Moore, R. E. Reddy, J. Wu, Z. Yu. Evaluation of chemilumines-
cent estradiol conjugates by using a surface plasmon resonance
detector. Steroids 2000, 65, 295.
References
[
[
[
[
[
1] A. Sinz. Chemical cross-linking and mass spectrometry for mapping
three-dimensional structures of proteins and protein complexes.
J. Mass Spectrom. 2003, 38, 1225.
2] M. A. Trakselis, S. C. Alley, F. T. Ishmael. Identification and mapping
of protein–protein interactions by a combination of cross-linking,
cleavage and proteomics. Bioconj. Chem. 2005, 16, 741.
3] A. Sinz.Chemicalcross-linkingandmassspectrometrytomapthree-
dimensional protein structures and protein–protein interactions.
Mass Spectrom. Rev. 2006, 25, 660.
4] M. M. Young, N. Tang, J. C. Hempel, C. M. Oshiro, E. W. Taylor,
I. D. Kuntz, B. W. Gibson, G. Dollinger. High throughput protein
fold identification by using experimental constraints derived from
intramolecular cross-links and mass spectrometry. Proc. Nat. Acad.
Sci. U.S.A. 2000, 97, 5802.
[
[
[
20] D. M. Schulz, S. Kalkhof, A. Schmidt, C. Ihling, C. Stingl, K. Mechtler,
O. Zsch o¨ rnig, A. Sinz. Annexin A2/p11 interaction: new insights
into annexin A2 tetramer structure by chemical cross-linking,
high-resolution mass spectrometry, and computational modeling.
Proteins 2007, 69, 254.
21] S. Peri, H. Steen, A. Pandey. GPMAW – a software tool for analyzing
proteins and peptides. Trends Biochem. Sci. 2001, 26, 687.
22] L. J. de Koning, P. T. Kasper, J. W. Back, M. A. Nessen, F. Vanrobaeys,
J. van Beeumen, E. Gherardi, C. G. de Koster, L. de Jong. Computer-
assisted mass spectrometric analysis of naturally occurring and
artificially introduced cross-links in proteins and protein complexes.
FEBS J. 2006, 273, 281.
[
[
[5] J. W. Back, A. F. Hartog, H. L. Dekker, A. O. Muijsers, L. J. de Koning,
L. D. Jong. A new crosslinker for mass spectrometric analysis of
the quaternary structure of protein complexes. J. Am. Soc. Mass
Spectrom. 2001, 12, 222.
[
[
6] E. J. Soderblom, M. B. Goshe. Collision-induced dissociative
chemical cross-linking reagents and methodology: applications
to protein structural characterization using tandem mass
spectrometry analysis. Anal. Chem. 2006, 78, 8059.
7] E. J. Soderblom, B. G. Bobay, J. Cavanagh, M. B. Goshe. Tandem
mass spectrometry acquisition approaches to enhance
identification of protein–protein interactions using low-energy
collision-induced dissociative chemical crosslinking reagents.
Rapid Commun. Mass Spectrom. 2007, 21, 3395.
8] E. V. Petrotchenko, V. K. Olkhovik, C. H. Borchers. Isotopically coded
cleavable cross-linker for studying protein–protein interaction and
protein complexes. Mol. Cell. Proteomics 2005, 4, 1167.
9] F. Dreiocker, M. Q. M u¨ ller, A. Sinz, M. Sch a¨ fer. Collision-induced
dissociative chemical cross-linking reagent for protein structure
characterization: applied Edman chemistry in the gas phase.
J. Mass Spectrom. 2010, 45, 178.
[
[
23] http://www2.lib.udel.edu/database/intermed/scifind/viewer.html;
Accelrys ViewerLite 5.0 Software.
24] B. Schilling, R. H. Row, B. W. Gibson, X. Guo, M. M. Young. MS
2
assign, automated assignment and nomenclature of tandem
mass spectra of chemically crosslinked peptides. J. Am. Soc. Mass
Spectrom. 2003, 14, 834.
[
[
[
25] S. Kalkhof, A. Sinz. Chances and pitfalls of chemical cross-linking
with amine-reactive N-hydroxy succinimide esters. Anal. Bioanal.
Chem. 2008, 392, 305.
26] S. M a¨ dler,C. Bich,D. Touboul,R. Zenobi.Chemicalcross-linkingwith
NHS esters: a systematic study on amino acid reactivities. J. Mass
Spectrom. 2009, 44, 694.
27] G. H. Dihazi, A. Sinz. Mapping low-resolution three-dimensional
protein structures using chemical cross-linking and Fourier
transform ion-cyclotron resonance mass spectrometry. Rapid
Commun. Mass Spectrom. 2003, 17, 2005.
[
[
[
10] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse.
Electrospray ionization for mass spectrometry of large
biomolecules. Science 1989, 246, 64.
J. Mass. Spectrom. 2010, 45, 880–891
Copyright ꢀc 2010 John Wiley & Sons, Ltd.
www.interscience.wiley.com/journal/jms