Paper
Organic & Biomolecular Chemistry
of readily accessible precursors and inexpensive molecular
iodine makes it quite simple and more attractive. This method
offers notable advantages such as mild/neutral conditions,
good conversions and excellent selectivity.
J. A. Beutler, W. M. Linehan and L. Neckers, Cancer Cell,
2013, 23, 228; (b) F. J. Sulzmaier, Z. Li, M. L. Nakashige,
D. M. Fash, W. J. Chain and J. W. Ramos, PLoS One, 2012,
7, e48032.
3 (a) N. M. Nasir, K. Ermanis and P. A. Clarke, Org. Biomol.
Chem., 2014, 12, 3323; (b) M. S. Kwon, S. K. Woo, S. W. Na
and E. Lee, Angew. Chem., Int. Ed., 2008, 47, 1733;
(c) S. K. Woo, M. S. Kwon and E. Lee, Angew. Chem., Int.
Ed., 2008, 47, 3242; (d) E. A. Crane and K. A. Scheidt,
Angew. Chem., Int. Ed., 2010, 49, 8316; (e) P. A. Wender and
A. J. Schrier, J. Am. Chem. Soc., 2011, 133, 9228;
(f) M. R. Gesinski and S. D. Rychnovsky, J. Am. Chem. Soc.,
2011, 133, 9727.
4 (a) H. Qian, X. Han and R. A. Widenhoefer, J. Am. Chem.
Soc., 2004, 126, 9536; (b) A. Guérinot, A. Serra-Muns,
C. Gnamm, C. Bensoussan, S. Reymond and J. Cossy, Org.
Lett., 2010, 12, 1808; (c) A. Aponick and B. Biannic, Org.
Lett., 2011, 13, 1330; (d) K. Tadpetch and S. D. Rychnovsky,
Org. Lett., 2008, 10, 4839; (e) D. Strand, P.-O. Norrby and
T. Rein, J. Org. Chem., 2006, 71, 1879; (f) H. Fuwa,
N. Ichinokawa, K. Noto and M. Sasak, J. Org. Chem.,
2012, 77, 2588; (g) J. S. Yadav, V. K. Singh and
P. Srihari, Org. Lett., 2014, 16, 836; (h) N. A. Petasis and
S.-P. Lu, Tetrahedron Lett., 1996, 37, 141; (i) E. O’Neil,
S. V. Kingree and K. P. C. Minbiole, Org. Lett., 2005, 7,
515; ( j) L. Liu and P. E. Floreancig, Angew. Chem., Int.
Ed., 2010, 49, 3069.
5 (a) H. Prins, J. Chem. Weekbl., 1919, 16, 1072;
(b) D. R. Adams and S. P. Bhatnagar, Synthesis, 1977, 661;
(c) B. B. Snider, in The Prins Reaction and Carbonyl Ene Reac-
tions, ed. B. M. Trost, I. Fleming and C. H. Heathcock, Per-
gamon Press, New York, 1991, 2, p. 527.
6 For recent reviews on the Prins reaction see: (a) C. Olier,
M. Kaafarani, S. S. Gastaldi and M. P. Bertrand, Tetra-
hedron, 2010, 66, 413; (b) I. M. Pastor and M. Yus, Curr.
Org. Chem., 2012, 16, 1277; (c) X. Han, G. R. Peh and
P. E. Floreancig, Eur. J. Org. Chem., 2013, 1193.
Experimental
IR spectra were recorded on a FT-IR spectrometer (KBr) and
reported in reciprocal centimetres (cm−1). 1H NMR spectra
were recorded at 600 MHz, 500 MHz, and 300 MHz and 13C
NMR spectra were recorded at 150, 125 MHz, and 75 MHz. For
1H NMR, tetramethylsilane (TMS) was used as the internal
standard (δ = 0) and the values are reported as follows: chemi-
cal shift, integration, multiplicity (s = singlet, d = doublet, t =
triplet, q = quartet, m = multiplet, br = broad), and the coup-
ling constants in Hz. For 13C NMR, CDCl3 (δ = 77.27) was used
as the internal standard and spectra were obtained with com-
plete proton decoupling. Low-resolution MS and HRMS data
were obtained using EI ionization. Reaction progress was
monitored by thin layer chromatography (TLC) on precoated
silica gel GF254 plates and the spots were detected under UV
light (254 nm).
General procedure
To a stirred solution of aldehyde (1.1 mmol) and 1a or 1b
(1.0 mmol) in dichloromethane (5.0 mL) was added 10 mol%
of molecular iodine at 0 °C. The resulting mixture was stirred
at 25 °C for the specified time. The progress of the reaction
was monitored by TLC using ethyl acetate and hexane as the
eluent. After completion, the mixture was quenched with water
and the product was extracted with ethyl acetate. The organic
layers were washed with aqueous sodium thiosulfate followed
by a brine solution and dried over anhydrous sodium sulfate.
Removal of the solvent followed by purification on silica gel
(Merck 100–200 mesh) using ethyl acetate/hexane (2 : 8) as the
eluent gave the pure tetrahydropyran.
7 (a) J. D. Elsworth and C. L. Willis, Chem. Commun., 2008,
1587; (b) S. N. Chavre, P. R. Ullapu, S. J. Min, J. K. Lee,
A. N. Pae, Y. Kim and Y. S. Cho, Org. Lett., 2009, 11, 3834;
(c) A. Barbero, A. Diez-Varga and F. J. Pulido, Org. Lett.,
2013, 15, 5234.
8 (a) Y. S. Cho, H. Y. Kim, J. H. Cha, A. N. Pae, H. Y. Koh,
J. H. Choi and M. H. Chang, Org. Lett., 2002, 4, 2025;
(b) Z.-H. Chen, Y.-Q. Tu, S.-Y. Zhang and F. M. Zhang, Org.
Lett., 2011, 13, 724; (c) E. Fenster, C. Fehl and J. Aube, Org.
Lett., 2011, 13, 2614.
Acknowledgements
B. V. S thanks CSIR, New Delhi for the financial support as a
part of the XII five year plan program under the title ORIGIN
(CSC-0108).
Notes and references
1 (a) M. Zahel and P. Metz, Beilstein J. Org. Chem., 2013, 9,
2028; (b) B. M. Fraga, Nat. Prod. Rep., 2012, 29, 1334;
(c) D. A. Foley and A. R. Maguire, Tetrahedron, 2010, 66,
1131; (d) R. Ratnayake, D. Covell, T. T. Ransom,
9 (a) A. J. Bunt, C. D. Bailey, B. D. Cons, S. J. Edwards,
J. D. Elsworth, T. Pheko and C. L. Willis, Angew. Chem., Int.
Ed., 2012, 51, 3901; (b) B. D. Cons, A. J. Bunt, C. D. Bailey
and C. L. Willis, Org. Lett., 2013, 15, 2046.
K. R. Gustafson and J. A. Beutler, Org. Lett., 2009, 11, 57; 10 (a) X. F. Yang, M. Wang, Y. Zhang and C. J. Li, Synlett, 2005,
(e) M. Zahel, A. Keßberg and P. Metz, Angew. Chem., Int.
Ed., 2013, 52, 5390.
1912; (b) H. M. Lee, C. N. Oberhuber and M. D. Shair,
J. Am. Chem. Soc., 2008, 130, 16864.
2 (a) C. Sourbier, B. T. Scroggins, R. Ratnayake, T. L. Prince, 11 Y. M. Ren, C. Cai and R. C. Yang, RSC Adv., 2013, 3,
S. Lee, M.-J. Lee, P. L. Nagy, Y. H. Lee, J. B. Trepel,
7182.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015