Dc = 2.223 g cm21, m (Mo-Ka) = 6.928 mm21, 9558 reflections measured,
3324 unique (Rint = 0.0232) which were used in all calculations. The final
wR2 was 0.0708 (all data).
3: C30H29Br2N2PPdS, M = 746.80, monoclinic, a = 9.1662(7), b =
3
˚
˚
15.3599(12), c = 20.4797(15) A, b = 91.949(2)u, U = 2881.7(4) A ,
T = 223(2) K, space group P21/c (no. 14), Z = 4, Dc = 1.721 g cm21
,
=
m (Mo-Ka) = 3.568 mm21, 20290 reflections measured, 6595 unique (Rint
0.0385) which were used in all calculations. The final wR2 was 0.0929 (all
data).CCDC 610655–610657. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b608325k
{ Spectroscopic data: [HL]Br: 1H NMR (300 MHz, CDCl3): d 10.37 (s, 1 H,
NCHN), 7.65 (dd, 3J(H,H) = 7.5 Hz, d, 4J(H,H) = 1.2 Hz, 1 H, Ar–H), 7.43–
7.22 (m, 5 H, Ar–H), 5.64 (s, 2 H, CH2), 4.10 (s, 3 H, NCH3), 2.50 (s, 3 H,
SCH3). 13C{1H} NMR (75.47 MHz, CDCl3): d 138.4 (s, NCN), 137.4,
131.2, 130.7, 130.5, 127.0, 126.2 (s, Ar–C), 123.4, 121.8 (s, NCH), 51.1 (s,
CH2), 36.8 (s, NCH3), 16.1 (s, SCH3). cis-1: 1H NMR (300 MHz, CD3CN):
d 7.36–6.82 (m, br, 12 H, Ar–H), 5.45 (s, br, 4 H, CH2), 3.87 (s, br, 6 H,
NCH3), 2.55 (s, br, 6 H, SCH3). 2: 1H NMR (300 MHz, CDCl3): d 7.50–
6.54 (m, br, 6 H, Ar–H), 5.93 (s, br, 2 H, CH2), 4.04 (s, br, 3 H, NCH3),
2.83 (s, br, 3 H, SCH3). 3: 1H NMR (300 MHz, CDCl3): d 7.66–7.05 (m,
19 H, Ar–H), 6.56 (d, 3J(H,H) = 1.9 Hz, 1 H, CH), 6.40 (d, 3J(H,H) = 1.9 Hz,
1 H, CH), 5.76 (d, 2J(H,H) = 14.3 Hz, 1 H, CH2), 4.71 (d, 2J(H,H) = 14.3 Hz,
1 H, CH2), 3.61 (s, 3 H, NCH3), 2.42 (s, 3 H, SCH3). 31P NMR (121 MHz,
CDCl3): d 27.1 (s, 1 P, PPh3). 13C{1H} NMR (75.47 MHz, CDCl3): d 162.7
(s, NCN), 137.5 (s, Ar–C), 134.3 (d, 2/3J(P,C) = 11.0 Hz, Ar–C), 132.3 (s, Ar–
C), 131.2 (d, 1J(P,C) = 35.7, Ar–C), 131.0 (d, 4J(P,C) = 2.7 Hz, Ar–C), 130.2,
Fig. 3 Molecular structure of 3 showing 50% probability ellipsoids.
˚
2/3
Selected bond lengths [A] and angles [u]: Pd1–C1 1.986(3), Pd1–P1
129.5 (s, Ar–C), 128.5 (d,
121.3 (s, Ar–C), 51.4 (s, CH2), 37.9 (s, NCH3), 16.4 (s, SCH3).
J
= 11.0 Hz, Ar–C), 126.7, 126.3, 122.8,
(P,C)
2.2642(8), Pd1–Br1 2.4775(4), Pd1–Br2 2.4785(3), C1–N1 1.349(4), C1–N2
1.350(4); C1–Pd1–P1 92.18(9), C1–Pd1–Br1 86.41(9), P1–Pd1–Br2
91.03(2), Br1–Pd1–Br2 90.763(15), N1–C1–N2 105.1(3).
1 F. E. Hahn, Angew. Chem., Int. Ed., 2006, 45, 1348; V. Ce´sar, S. Bellemin-
Laponnaz and L. H. Gade, Chem. Soc. Rev., 2004, 33, 619;
W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290.
In conclusion, we have presented a straightforward synthesis of
the thioether-functionalized imidazolium salt [HL]Br. This mod-
ular synthetic route allows the introduction of a wide range of
alkyl substituents at the sulfur atom, which offers the possibility to
fine-tune both electronic and steric factors of the sulfur donor. We
have shown that palladium(II) complexes derived from [HL]Br are
easily accessible using the Ag–carbene transfer method. In our
case, the L : Pd ratio determines either the formation of dicarbene
(1) or monocarbene (2) complexes. Treatment of the latter with a
stronger phosphine ligand cleaves the Pd–S(Ar)R bond forming
complex 3, which demonstrates a truly hemilabile behavior of the
NHC ligand L. Studies on the catalytic activities of the complexes
and extension of the methodology to other donor-functionalized
NHCs are under way.{
2 J. Schwarz, V. P. W. Bo¨hm, M. G. Gardiner, M. Grosche,
W. A. Herrmann, W. Hieringer and G. Raudaschl-Sieber, Chem.–Eur.
J., 2000, 6, 1773.
3 W. A. Herrmann, L. J. Gooßen and M. Spiegler, J. Organomet. Chem.,
1997, 546, 357; D. S. McGuinness and K. J. Cavell, Organometallics,
2000, 19, 741; S. Gru¨ndemann, A. Kovacevic, M. Albrecht, J. W. Faller
and R. H. Crabtree, J. Am. Chem. Soc., 2002, 124, 10473; L. G. Bonnet
and R. E. Douthwaite, Organometallics, 2003, 22, 4187; H. Aihara,
T. Matsuo and H. Kawaguchi, Chem. Commun., 2003, 2204; B. E. Ketz,
A. P. Cole and R. M. Waymouth, Organometallics, 2004, 23, 2835;
A. W. Waltman and R. H. Grubbs, Organometallics, 2004, 23, 3105;
N. Styliandes, A. A. Danopoulos and N. Tsoureas, J. Organomet. Chem.,
2005, 690, 5948; F. E. Hahn, M. C. Jahnke, V. Gomez-Benitez,
D. Morales-Morales and T. Pape, Organometallics, 2005, 24, 6458;
R. W. Wang, B. Twamley and J. M. Shreeve, J. Org. Chem., 2006, 71,
426; S. Dastgir, K. S. Coleman, A. R. Cowley and M. L. H. Green,
Organometallics, 2006, 25, 300; S. A. Mungur, A. J. Blake, C. Wilson,
J. McMaster and P. L. Arnold, Organometallics, 2006, 25, 1861.
4 D. Sellmann, W. Prechtel, F. Knoch and M. Moll, Organometallics, 1992,
11, 2346; D. Sellmann, W. Prechtel, F. Knoch and M. Moll, Inorg.
Chem., 1993, 32, 538; D. Sellmann, C. Allmann, F. Heinemann, F. Knoch
and J. Sutter, J. Organomet. Chem., 1997, 541, 291; J. A. Cabeza, I. del
Rio, M. G. Sa´nchez-Vega and M. Sua´rez, Organometallics, 2006, 25,
1831.
Notes and references
{ Crystal data: cis-1?2DMF: C30H42Br2N6O2PdS2, M = 849.04, triclinic,
˚
a = 10.0059(6), b = 11.4835(7), c = 16.1385(10) A, a = 76.031(1), b =
3
˚
78.306(2), c = 84.751(1)u, U = 1760.40(19) A , T = 223(2) K, space group
P1 (no. 2), Z = 2, Dc = 1.602 g cm21, m (Mo-Ka) = 2.951 mm21, 12426
¯
5 H. Seo, H.-J. Park, B. Y. Kim, J. H. Lee, S. U. Son and Y. K. Chung,
Organometallics, 2003, 22, 618.
6 H. M. J. Wang and I. J. B. Lin, Organometallics, 1998, 17, 972.
7 H. V. Huynh, Y. Han, J. H. H. Ho and G. K. Tan, Organometallics,
2006, 25, 3267.
reflections measured, 8012 unique (Rint = 0.0269) which were used in all
calculations. The final wR2 was 0.1006 (all data).
2: C12H14Br2N2PdS, M = 484.53, triclinic, a = 8.6338(5), b = 9.6410(6),
˚
c = 9.7985(10) A, a = 107.453(1), b = 103.622(1), c = 101.368(1)u,
3
U = 723.96(8) A , T = 223(2) K, space group P1 (no. 2), Z = 2,
˚
¯
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 3833–3835 | 3835