Organic Letters
Letter
Author Contributions
2003, 5, 1019. (d) Krause, J. G.; Leskiw, B. D.; Emery, M. L.; McGahan,
M. E.; McCourt, M. P.; Priefer, R. Tetrahedron Lett. 2010, 51, 3568.
†These authors contributed equally.
(
e) Baburaj, T.; Thambidurai, S. Synlett 2011, 2011, 1993. (f) Baburaj,
T.; Thambidurai, S. Tetrahedron Lett. 2012, 53, 2292.
11) For an entry into the blocked isocyanate literature, see: (a) Wicks,
Notes
(
The authors declare no competing financial interest.
D. A.; Wicks, Z. W. Prog. Org. Coat. 1999, 36, 148. (b) Wicks, D. A.;
Wicks, Z. W. Prog. Org. Coat. 2001, 41, 1. (c) Delebecq, E.; Pascault, J.-
P.; Boutevin, B.; Ganachaud, F. Chem. Rev. 2013, 113, 80.
ACKNOWLEDGMENTS
■
We thank the University of Ottawa and NSERC for generous
financial support. M.A.A. and R.A.I. thank NSERC for graduate
scholarships.
13) Garland, K.; Gan, W.; Depatie-Sicard, C.; Beauchemin, A. M. Org.
Lett. 2013, 15, 4074.
14) For reviews on electrophilic amination, see: (a) Erdik, E.; Ay, M.
Chem. Rev. 1989, 89, 1947. (b) Dembech, P.; Seconi, G.; Ricci, A. Chem.
(
REFERENCES
■
(
1) Rappoport, Z.; Liebman, J. F. The Chemistry of Hydroxylamines,
Oximes and Hydroxamic Acids; The Chemistry of Functional Groups;
(
John Wiley & Sons Ltd.: West Sussex, England, 2009.
-
3
Eur. J. 2000, 6, 1281. (c) Barker, T. J.; Jarvo, E. R. Synthesis 2011, 2011,
954. (d) Yan, X.; Yang, X.; Xi, C. Catal. Sci. Technol. 2014, 4, 4169.
(
2) (a) Li, Z.; Yamamto, H. Acc. Chem. Res. 2013, 46, 506. (b) Xiao, K.-
J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J.
Am. Chem. Soc. 2014, 136, 8138.
(15) Precursors were used after storage in the fridge or on the bench for
up to 2 years after synthesis with no decrease in reactivity. However, the
precursors with p-nitrophenol as a masking group were manipulated
carefully (not concentrated in vacuo at temperatures > 30 °C and were
not heated after dissolution) to maintain the same reactivity.
(
3) For a recent review on hydroxamate directing groups, see: Zhu, R.-
Y.; Farmer, M. E.; Chen, Y.-Q.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55,
0578.
4) For reviews on the interesting biological properties of hydroxamic
1
(
(16) Complex mixtures were obtained in attempting to form 4j and 4k.
acids, see: (a) Marks, P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R.;
Miller, T.; Kelly, W. K. Nat. Rev. Cancer 2001, 1, 194. (b) Johnstone, R.
W. Nat. Rev. Drug Discovery 2002, 1, 287. (c) Kelly, W. K.; Marks, P. A.
Nat. Clin. Pract. Oncol. 2005, 2, 150. (d) Marks, P. A.; Breslow, R. Nat.
Biotechnol. 2007, 25, 84. (e) Harrison, C. Nat. Rev. Drug Discovery 2009,
While common with hydroxamic acid derivatives, to our knowledge,
Lossen rearrangements from oxyureas or oxycarbamate substrates are
rare and difficult to control given the formation of N-isocyanates or O-
isocyanates as intermediates. For selected examples, see: (a) Tserng, K.-
Y.; Bauer, L. J. Org. Chem. 1973, 38, 3498. (b) Tamura, Y.; Minamikawa,
J.; Haruki, S.; Ikeda, M. Synthesis 1974, 1974, 361.
8
, 924. (f) Gupta, S. P. Chem. Rev. 2015, 115, 6427.
5) For a recent review on N-isocyanate chemistry, see: Vincent-
Rocan, J.-F.; Beauchemin, A. M. Synthesis 2016, 48, 3625.
6) For unsuccessful attempts synthesizing and isolating O-
(
(
17) For examples of metal-free Cope-type hydroamination
publications from our group, see: (a) Beauchemin, A. M.; Moran, J.;
Lebrun, M.-E.; Seguin, C.; Dimitrijevic, E.; Zhang, L.; Gorelsky, S. I.
Angew. Chem., Int. Ed. 2008, 47, 1410. (b) Moran, J.; Gorelsky, S. I.;
Dimitrijevic, E.; Lebrun, M.-E.; Bedard, A.-C.; Seguin, C.; Beauchemin,
A. M. J. Am. Chem. Soc. 2008, 130, 17893. (c) Bourgeois, J.; Dion, I.;
Cebrowski, P. H.; Loiseau, F.; Bedard, A.-C.; Beauchemin, A. M. J. Am.
(
́
isocyanates, see: (a) Sheludyakov, V. D.; Dmitrieva, A. B.; Kirilin, A.
D.; Chernyshev, E. A. Zh. Obshch. Khim. 1983, 53, 2051; J. Gen. Chem.
USSR 1983, 53, 1851. (b) Mormann, W.; Leukel, G. Synthesis 1988,
́
́
1
988, 990. For early studies of O-isocyanates, see: (c) Nef, J. U. Liebigs
Ann. Chem. 1894, 280, 263. (d) Jones, L. W. J. Am. Chem. Soc. 1898, 20,
. (e) Jones, L. W.; Neuffer, L. J. Am. Chem. Soc. 1917, 39, 652. For a
́
Chem. Soc. 2009, 131, 874. (d) Roveda, J. G.; Clavette, C.; Hunt, A. D.;
Gorelsky, S. I.; Whipp, C. J.; Beauchemin, A. M. J. Am. Chem. Soc. 2009,
1
review of heteroatom-substituted heteroallenes, including heteroatom-
substituted isocyanates, see: (f) Reichen, W. Chem. Rev. 1978, 78, 569.
1
31, 8740. For an overview of our work in this area, see: (e) Beauchemin,
A. M. Org. Biomol. Chem. 2013, 11, 7039.
18) This reaction is also referred to as the reverse Cope elimination or
(
7) For examples that likely go through O-isocyanate intermediates,
(
see: (a) Parrish, D. A.; Zou, Z.; Allen, L.; Day, C. S.; King, B. Tetrahedron
Lett. 2005, 46, 8841. (b) Beevers, R. E.; Buckley, G. M.; Davies, N.;
Fraser, J. L.; Galvin, F. C.; Hannah, D. R.; Haughan, A. F.; Jenkins, K.;
Mack, S. R.; Pitt, W. R.; Ratcliffe, A. J.; Richard, M. D.; Sabin, V.; Sharpe,
A.; Williams, S. C. Bioorg. Med. Chem. Lett. 2006, 16, 2539. (c) Berry, J.
F.; Ferraris, D. V.; Duvall, B.; Hin, N.; Rais, R.; Alt, J.; Thomas, A. G.;
Rojas, C.; Hashimoto, K.; Slusher, B. S.; Tsukamoto, T. ACS Med. Chem.
Lett. 2012, 3, 839.
Cope−House cyclization in the literature. Work in ref 17 showed that it
is broadly applicable in intermolecular systems. For a review, see:
Cooper, N. J.; Knight, D. W. Tetrahedron 2004, 60, 243.
(
19) (a) Pfeiffer, J. Y.; Beauchemin, A. M. J. Org. Chem. 2009, 74, 8381.
b) Zhao, S.; Bilodeau, E.; Lemieux, V.; Beauchemin, A. M. Org. Lett.
012, 14, 5082. (c) Brown, A. R.; Uyeda, C.; Brotherton, C. A.;
Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 6747.
(
2
1
(
20) 20% H NMR yield for N-cyclohexylbutenylamine (90 min); 24%
(
8) For examples of trimerization of O-isocyanate intermediates, see:
a) McKay, A. F.; Garmaise, D. L.; Paris, G. Y.; Gelblum, S. Can. J. Chem.
960, 38, 343. (b) Staab, H. A. Angew. Chem., Int. Ed. Engl. 1962, 1, 351.
c) Randolph, M. T.; Hendrick, T. J. J. Org. Chem. 1965, 30, 1268.
d) Heep, U. Tetrahedron 1975, 31, 77. (e) Butula, I.; Takac, M. J. -M.
M. J. -M.; Butula, I.;
S. Acta Pharm. 2013, 63,
1
H NMR yield for N-benzylbutenylamine (60 min).
(
1
(
(
(21) Krenske, E. H.; Davison, E. C.; Forbes, I. T.; Warner, J. A.; Smith,
A. L.; Holmes, A. B.; Houk, K. N. J. Am. Chem. Soc. 2012, 134, 2434.
̌
Croat. Chem. Acta 2000, 73, 569. (f) Kos, I.; Takac,
Birus, M.; Maravic-Vlahovicek, G.; Dabelic,
74.
9) For recent examples demonstrating the propensity of O-acyl
̌
̌
́
̌
́
1
(
hydroxylamines to undergo Lossen rearrangements under basic
conditions, see: (a) Hoshino, Y.; Okuno, M.; Kawamura, E.; Honda,
K.; Inoue, S. Chem. Commun. 2009, 17, 2281. (b) AbdelHafez, E-S. M.
N.; Aly, O. M.; Abuo-Rahma, G. E-D A. A.; King, S. B. Adv. Synth. Catal.
2
014, 356, 3456. (c) Ohtsuka, N.; Okuno, M.; Hoshino, Y.; Honda, K.
Org. Biomol. Chem. 2016, 14, 9046.
10) (a) Romine, J. L.; Martin, S. W.; Meanwell, N. A.; Epperson, J. R.
(
Synthesis 1994, 1994, 846. For examples of unexpected Lossen
rearrangements forming O-isocyanates, see: (b) Hanessian, S.;
Johnstone, S. J. Org. Chem. 1999, 64, 5896. (c) Fioravanti, S.;
Marchetti, F.; Morreale, A.; Pellacani, L.; Tardella, P. A. Org. Lett.
D
Org. Lett. XXXX, XXX, XXX−XXX