Please do not adjust margins
Organic & Biomolecular Chemistry
Page 6 of 8
ARTICLE
Journal Name
The photoinitiated reactions were carried out in a borosilicate
vessel by irradiation with a Hg-lamp giving maximum emission
at 365 nm, without any caution to exclude air or moisture.
Conflicts of interest
There are no conflicts of interest to declare.DOI: 10.1039/C7OB02184D
Representative example for the photoinduced addition of thiols to
alkenes at −80 °C in the presence of DPAP:
Acknowledgements
The authors gratefully acknowledge financial support for this
research from the National Research, Development and
Innovation Office of Hungary (OTKA K 109208 and TÉT_15_IN-
1-2016-0071). The research was also supported by the EU and
co-financed by the European Regional Development Fund under
the project GINOP-2.3.2-15-2016-00008.
2’,3’-O-isopropylidene-5’-S-n-propyl-5’-thiouridine (3a) and 1-
(2’,3’-O-isopropylidene-5’-S-n-propyl-5’-thio--L-lyxofuranosyl)-
uracil (3b)
To a solution of alkene
1 (90 mg, 0.3 mmol) and thiol 2 (0.6
mmol, 2 equiv., 60 µL) in toluene (1 mL) 2,2-dimethoxy-2-
phenylacetophenone (7.7 mg, 0.03 mmol) was added. The
reaction mixture was cooled to −80 °C and irradiated with UV
light for 15 min. After 15 min DPAP (7.7 mg, 0.03 mmol)
dissolved in toluene (0.3 mL) was added, and the mixture was
cooled to –80 °C and irradiated for another 15 min. The addition
of DPAP and irradiation at this temperature was repeated once
more. Then the solution was concentrated and the crude
product was purified by flash column chromatography (gradient
elution 8:2→7:3 n-hexane–acetone) to give a 5:1 mixture of 3a
and 3b (103 mg, 89%). A second flash column chromatography
(95:5 CH2Cl2–acetone) of the diastereomeric mixture gave pure
3a (Rf = 0.31, 7:3 n-hexane–acetone) as a colourless syrup and
pure 3b (Rf = 0.30, 7:3 n-hexane–acetone) as a colourless syrup.
Notes and references
§ As terminal double bonds react much faster than internal ones
and conjugated double bonds are nonreactive under thio-click
conditions (see ref 6a and 6c) chemoselective addition to the
exocyclic double bond was expected.
§§ We have studied the synthesis of 17 and 18 by nucleophilic
substitution starting from the corresponding 5’-deoxy-5’-iodo
uridine derivative. Compound 17 could be prepared in 76% yield
with 4 equiv. of
6 in the presence of Cs2CO3. However, analogous
reactions of using various bases gave 18 in a yield of up to 20%.
7
§§§ Due to the low reactivity of the t-butylthiyl radical formed
(See ref 8c), a higher excess of 2-methylpropane-2-thiol was
required for the efficient thiol-ene reaction.
Compound 3a (D
-ribo product): 1H NMR (400 MHz, CDCl3) δ
(ppm) 9.89 (s, 1H, NH), 7.37 (d, J = 8.1 Hz, 1H, H-6 uracil), 5.75
(d, J = 8.1 Hz, 1H, H-5 uracil), 5.69 (d, J1’,2’ = 2.2 Hz, 1H, H-1’),
1
2
L. P. Jordheim, D. Durantel, F. Zoulim and C. Dumontet, Nat.
Rev. Drug Discov., 2013, 12, 447.
(a) E. Ichikawa, and K. Kato, Current Med. Chem., 2001, 8, 385;
4.99 (dd, J2’,3’ = 6.6 Hz, J1’,2’ = 2.2 Hz, 1H, H-2’), 4.82 (dd, J2’,3’
=
(b) S. Singh, D. Bhattarai, G. Veeraswamy, Y. Choi, K. Lee,
Current Org. Chem., 2016, 20, 856.
(a) M. Thomsen, S. B. Vogensen, J. Buchardt, M. D. Burkart, R.
P. Clausen, Org. Biomol. Chem., 2013, 11, 7606; (a) D. Datta,
A. Samanta, S. Dasgupta, T. Pathak, RSC Advances, 2014, 4,
6.6 Hz, J3’,4’ = 4.2 Hz, 1H, H-3’), 4.27 (td, J4’,5’ = 6.1 Hz, J3’,4’ = 4.3
Hz, 1H, H-4’), 2.92-2.80 (m, 2H, H-5’a,b), 2.55 (t, J = 7.5 Hz, 2H,
CH3CH2CH2), 1.63 (dt, J = 14.7 Hz, J = 7.4 Hz, 2H, CH3CH2CH2),
1.57 (s, 3H, i-propylidene CH3), 1.36 (s, 3H, i-propylidene CH3),
0.98 (t, J = 7.3 Hz, 3H, CH3CH2CH2); 13C NMR (100 MHz, CDCl3) δ
(ppm) 163.8, 150.1 (2C, 2 x CO uracil), 142.5 (1C, C-6 uracil),
114.7 (1C, i-propylidene Cq), 102.7 (1C, C-5 uracil), 94.2 (1C, C-
1’), 86.7 (1C, C-4’), 84.5 (1C, C-2’), 83.2 (1C, C-3’), 35.1 (1C,
CH3CH2CH2), 34.5 (1C, C-5’), 27.2, 25.4 (2C, 2 x i-propylidene
CH3), 23.0 (1C, CH3CH2CH2), 13.5 (1C, CH3CH2CH2); MALDI-TOF
MS: m/z calcd for C15H22N2NaO5S [M+Na]+ 365.114, found
365.119.
3
2214; (b) K. Kai, H. Fujii, R. Ikenaka, M. Akagawa, H. Hayashi,
Chem. Commun., 2014, 50, 8586; (c) B. D. Horning, R. M.
Suciu, D. A. Ghadiri, O. A. Ulanovskaya, M. L. Matthews, K. M.
Lum, Keriann M. Backus, Steven J. Brown, Hugh Rosen,
Benjamin F. Cravatt, J. Am. Chem. Soc., 2016, 138, 13335.
H. Kaur, B. R. Babu, and S. Maiti, Chem. Rev., 2007, 107, 4672.
(a) T. Posner, Ber. Dtsch. Chem. Ges., 1905, 38, 646; (b) K.
4
5
Griesbaum, Angew. Chem., Int. Ed., 1970, 9, 273
6
(a) C. E. Hoyle, T. Y. Lee, T. J. Roper, Polym Sci Part A: Polym.
Chem., 2004, 42, 5301; (b) A. Dondoni, Angew. Chem., Int. Ed.,
2008, 47, 8995; (c) C. E. Hoyle and C. N. Bowman, Angew.
Chem., Int. Ed., 2010, 49, 1540; (d) F. Dénès, M. Pichowicz, G.
Povie and P. Renaud, Chem. Rev., 2014, 114, 2587.
Compound 3b (L
-lyxo product): 1H NMR (400 MHz, CDCl3) δ
(ppm) 9.31 (s, 1H, NH), 7.22 (d, J = 8.0 Hz, 1H, H-6 uracil), 5.73
(dd, J = 8.1 Hz, J = 1.8 Hz, 1H, H-5 uracil), 5.36 (s, 1H, H-1’), 5.24
(d, J2’,3’ = 6.0 Hz, 1H, H-2’), 4.99 (dd, J2’,3’ = 5.9 Hz, J3’,4’ = 3.9 Hz,
1H, H-3’), 4.59 (td, J4’,5’ = 6.8 Hz, J3’,4’ = 3.9 Hz, 1H, H-4’), 2.88-
2.76 (m, 2H, H-5’a,b), 2.57 (td, J = 7.2 Hz, J = 0.8 Hz, 2H,
CH3CH2CH2), 1.65-1.57 (m, 2H, CH3CH2CH2), 1.52 (s, 3H, i-
propylidene CH3), 1.36 (s, 3H, i-propylidene CH3), 0.99 (t, J = 7.3
Hz, 3H, CH3CH2CH2); 13C NMR (100 MHz, CDCl3) δ (ppm) 163.7,
150.8 (2C, 2 x CO uracil), 143.7 (1C, C-6 uracil), 113.3 (1C, i-
propylidene Cq), 102.5 (1C, C-5 uracil), 97.4 (1C, C-1’), 85.8 (1C,
C-4’), 85.5 (1C, C-2’), 81.6 (1C, C-3’), 35.1 (1C, CH3CH2CH2), 31.1
(1C, C-5’), 26.4, 24.9 (2C, 2 x i-propylidene CH3), 23.1 (1C,
CH3CH2CH2), 13.6 (1C, CH3CH2CH2); ESI-TOF MS: m/z calcd for
C15H22N2NaO5S [M+Na]+ 365.114, found 365.122.
7
8
(a) A. Dondoni and A. Marra, Chem. Soc. Rev., 2012, 41, 573;
(b) L. McSweeney, F. Dénès, E. M. Scanlan, Eur. J. Org. Chem.,
2016, 2080.
(a) L. Lázár, M. Csávás, M. Herczeg, P. Herczegh, A. Borbás,
Org. Lett., 2012, 14, 4650; (b) L. Lázár, M. Csávás, Á. Hadházi,
M. Herczeg, M. Tóth, L. Somsák, T. Barna, P. Herczegh, A.
Borbás, Org. Biomol. Chem., 2013, 11, 5339; (c) L. Lázár, M.
Csávás, M. Tóth, L. Somsák, A. Borbás, Chem. Pap., 2015, 69
,
889 (d) J. József, L. Juhász, T. Z. Illyés, M. Csávás, A. Borbás, L.
Somsák, Carbohydr. Res., 2015, 413, 63; (e) L. Lázár, L. Juhász,
G. Batta, A. Borbás, L. Somsák, New J. Chem., 2017, 41, 1284;
9
(a) M. Fiore, A. Marra and A. Dondoni, J. Org. Chem., 2009, 74,
4422; (b) S. Staderini, A. Chambery, A. Marra and A. Dondoni,
Tetrahedron Lett., 2012, 53, 702.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins