6860
A. D. Roy et al. / Tetrahedron Letters 47 (2006) 6857–6860
Eds.; Pergamon: Oxford, 1999; Vol. 11, p 21; (c) Joule, J.
A.; Mills, K. Heterocyclic Chemistry; Blackwell Science:
Oxford, 2000; (d) Katritzky, A. R.; Pozharskii, A. F.
Handbook of Heterocyclic Chemistry; Pergamon: Oxford,
2003.
products were obtained as was evident by two close
spots on the TLC. However, the NMR spectra of the
mixtures proved to be too complex for detailed charac-
terization of the products. Thus, the mixtures were sep-
arated by rigorous column chromatography to obtain
single diastereomers of adequate purity. For the glu-
cose-derivative (4a), detailed NMR studies on both the
faster and slower moving spots on TLC are reported
separately (see Supplementry data). For other deriva-
tives, only faster moving purified components are
reported.
2. For reviews see: (a) Horton, D. A.; Bourne, G. T.; Smythe,
M. L. Chem. Rev. 2003, 103, 893; (b) Nicolaou, K. C.;
Vourloinis, D.; Winssinger, N.; Baran, P. S. Angew. Chem.
Int. Ed. 2000, 39, 44; (c) Arya, P.; Chou, D. T. H.; Back,
M. G. Angew. Chem. Int. Ed. 2001, 40, 339.
3. (a) Bonola, G.; Da Re, P.; Magistretti, M. J.; Massarani,
E.; Setnikar, I. J. Med. Chem. 1968, 11, 1136; (b)
Okumura, K.; Oine, T.; Yamada, Y.; Hayashi, G.;
Nakama, M. J. Med. Chem. 1968, 11, 348.
Further, the reactivity of the protected sugar hemiace-
tals followed the general pattern as the deoxy sugars re-
acted at a much faster rate than the pentopyranose and
the hexopyranose sugars. Having thus prepared a series
of 6-glycosylated 5,6-dihydro-quinazolino[4,3-b]quin-
azolin-8-ones, it was observed that the final products
contained a free hydroxyl group in the glycon portion,
which may be successfully utilized further as a potential
acceptor for the glycosylation reaction, and could fur-
ther create diversity in the molecule. A summary of
the sugar hemiacetals utilized and the reaction condi-
tions employed are presented in Table 1.
4. (a) Chan, J. H.; Hong, J. S.; Kuyper, L. F.; Jones, M. L.;
Baccanari, D. P.; Tansik, R. L.; Boytos, C. M.; Rudolph,
S. K.; Brown, A. D. J. Heterocycl. Chem. 1997, 34, 145;
(b) Gackenheimer, S. L.; Schaus, J. M.; Gehlert, D. R. J.
Pharmacol. Exp. Ther. 1996, 732, 113; (c) Dempcy, R. O.;
Skibo, E. B. Biochemistry 1991, 30, 8480; (d) Nordisk-
Droge. 18113; Patent, N. A. Ed.; Nordisk Drogeand
Kemi-Kalieforretning AIS: Netherlands, 1965; Chem.
Abstr. 1965, 63, 18113; (e) de Laszio, S. E.; Quagliato,
C. S.; Greenlee, W. J.; Patchett, A. A.; Chang, R. S. L.;
Lotti, V. J.; Chen, T. B.; Scheck, S. A.; Faust, K. A.;
Kivlighn, S. S.; Schorn, T. S.; Zingaro, G. J.; Siegl, P. K.
S. J. Med. Chem. 1993, 36, 3207; (f) Liverton, N. J.;
Armstong, D. J.; Claremon, D. A.; Remy, D. C.; Baldwin,
J. J.; Lynch, R. J.; Zhang, G.; Gould, R. J. Bioorg. Med.
Chem. Lett. 1998, 8, 483.
5. (a) Yale, H. L. J. Heterocycl. Chem. 1977, 14, 1357; (b)
Feldman, J. R.; Wagner, E. C. J. Org. Chem. 1942, 7, 31;
(c) Mhaske, S. B.; Argade, N. P. J. Org. Chem. 2004, 69,
4563.
6. (a) Ried, W.; Sinharray, A. Chem. Ber. 1963, 96, 3306; (b)
Hennequin, L. F.; Boyle, F. T.; Wardleworth, J. M.;
Marsham, P. R.; Kimbell, R.; Juckman, A. L. J. Med.
Chem. 1996, 39, 9; (c) Connolly, D. J.; Guiry, P. J. Synlett
2001, 1707.
In summary, the present method provides a convenient
one-step synthesis of novel sugar-heterocycle hybrid
molecules leading to the formation of sugar-derived
biheterocyclic 5,6-dihydro-quinazolino-[4,3-b]quinazol-
in-8-ones. The products not only represent a privileged
class of structures but also have a glycosyl linker
attached for improved bioavailability and bioactivity.
Further work is in progress for the utilization of these
compounds as glycosyl acceptors in glycosylation reac-
tions for the synthesis of heterocycles containing biolog-
ically active oligosaccharides.
7. (a) Takeuchi, H.; Haguvara, S.; Eguchi, S. Tetrahedron
1989, 45, 6375; (b) Takeuchi, H.; Haguvara, S.; Eguchi, S.
J. Org. Chem. 1991, 56, 1535.
8. Alexandre, F.-R.; Berecibar, A.; Wrigglesworth, R.; Bes-
sen, T. Tetrahedron 2003, 59, 1413.
Acknowledgements
9. (a) Rewcastle, G. W.; Palmer, B. D.; Bridges, A. J. J. Med.
Chem. 1996, 39, 918; (b) Tobe, M.; Isobe, Y.; Tomizawa,
H.; Nagasaki, T.; Takahashi, H.; Fukazawa, T.; Hayashi,
H. Bioorg. Med. Chem. 2003, 11, 383.
A.D.R. is thankful to CSIR, New Delhi, for providing a
fellowship.
10. Akazome, M.; Yamamoto, J.; Kondo, T.; Watanabe, Y.
J. Organomet. Chem. 1995, 494, 229.
Supplementary data
11. For a review see. Connoly, D. J.; Cusack, D.; O’Sullivan,
T. P.; Guiry, P. J. Tetrahedron 2005, 61, 10153.
12. Shi, D.; Rong, L.; Wang, J.; Zhuang, Q.; Wang, X.; Hu,
H. Tetrahedron Lett. 2003, 44, 3199.
13. (a) Gotthelf, P.; Bogert, M. T. J. Am. Chem. Soc. 1901, 23,
611; (b) Endicott, M. M.; Wick, E.; Mercury, M. L.;
Sherrill, M. J. Am. Chem. Soc. 1946, 68, 1299.
General experimental procedure and copies of NMR
spectra of all the compounds are included. Supplemen-
tary data associated with this article can be found, in
´
´
14. Kren, V.; Martınkova, L. Curr. Med. Chem. 2001, 8, 1313.
15. Roy, A. D.; Subramanian, A.; Roy, R. J. Org. Chem.
2006, 71, 382.
References and notes
1. (a) Comprehensive Heterocyclic Chemistry II; Katritzky,
A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon:
Oxford, 1996; (b) Undheim, K.; Benneche, T. In Advances
in Heterocyclic Chemistry; Gilchrist, T. L., Gribble, G. W.,
16. Roy, A. D.; Sharma, S.; Grover, R. K.; Kundu, B.; Roy,
R. Org. Lett. 2004, 6, 4763.
17. Abdel-Jalil, R. J.; Volter, W.; Saeed, M. Tetrahedron Lett.
2004, 45, 3475.