A. V. Coelho et al. / Tetrahedron Letters 48 (2007) 7671–7674
7673
3. (a) Heidenreich, R. G.; Krauter, J. G. E.; Pietsch, J.;
Ko¨hler, K. J. Mol. Catal. A: Chem. 2002, 182–183, 499;
(b) Ko¨hler, K.; Heidenreich, R. G.; Krauter, J. G. E.;
Pietsch, J. Chem. Eur. J. 2002, 8, 622; (c) Colacot, T. J.;
Gore, E. S.; Kuber, A. Organometallics 2002, 21, 3301; (d)
LeBlond, C. R.; Andrews, A. T.; Sun, Y.; Sowa, J. T., Jr.
Org. Lett. 2001, 3, 1555.
4. (a) Narayanan, R.; El-Sayed, M. A. J. Catal. 2005, 234,
348; (b) Narayanan, R.; El-Sayed, M. A. J. Am. Chem.
Soc. 2003, 125, 8340; (c) Ko¨hler, K.; Wagner, M.;
Djakovitch, L. Catal. Today 2001, 66, 105.
5. Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
6. (a) Parrish, D. A.; Zou, Z.; Allen, C. L.; Day, C. S.; King,
S. B. Tetrahedron Lett. 2005, 46, 8841; (b) Bogliotti, N.;
Dalko, P. I. Tetrahedron Lett. 2005, 46, 6915; (c) Mura-
kami, M.; Hasegawa, N.; Hayashi, M.; Ito, Y. J. Org.
Chem. 1991, 56, 7356.
The concentration of Pd(0)/Pd(II) species was deter-
mined via atomic absorption and a level of 1.1 mg Lꢀ1
(0.010 mM solution) Pd was found, that is, only 0.17%
Pd(II) was leached from the Pd source.
Considering the use of 30 mL of this solution and 94%
yield on solution recycling experiments an expressive
TON of about 3000 can be calculated. This result is in
agreement with our and other groups findings on the
fact that Pd species leached from the nanoparticles, in
our case from surface, are the true catalysts.7,18,19 The
concentration of Pd found is compatible to the results
of De Vries19 group who entitled such catalytic effect
as homeopathic.
In conclusion, Pd/CaCO3 proved to be a suitable cata-
lyst source for Stille cross-coupling reactions in a
ligand-free aqueous system. Substituted biaryls were
obtained with good yields in this method. Chlorobenz-
ene was found to be a convenient substrate. The catalyst
could be recycled up to three times without any notice-
able loss of activity. Use of the ethanol–water solution
after decantation of the catalyst and product extraction,
afforded high yields of product indicating that the true
catalyst was a soluble species that was formed upon slow
oxidative addition to the insoluble catalyst and repeated
reductive elimination/oxidative addition in homo-
geneous solution. The present phosphine-free system
can be regarded as of industrial interest.
7. Oliveira, B. L.; Antunes, O. A. C. Lett. Org. Chem. 2007,
4, 13.
8. Geneˆt, J. P.; Savignac, M. J. Organomet. Chem. 1999, 576,
305.
9. Brunner, H.; Courey, N. C.; Geneˆt, J. P. Tetrahedron Lett.
1999, 40, 4815.
10. (a) Leadbeater, N. E.; Marco, M. J. Org. Chem. 2003, 68,
´
´
888; (b) Najera, C.; Gil-Molto, J.; Karlstro¨m, S. Adv.
Synth. Catal. 2004, 346, 1798.
´
11. (a) Liang, B.; Daı, M.; Chen, J.; Yang, Z. J. Org. Chem.
2005, 70, 391; (b) Rollet, P.; Kleist, W.; Dufaud, V.;
Djakovitch, L. J. Mol. Catal. A: Chem. 2005, 241, 39.
12. (a) Solabannavar, S. B.; Desai, U. V.; Mane, R. B. Green
Chem. 2002, 4, 347; (b) Li, J.; Hu, X.; Xie, Y. Tetrahedron
2006, 62, 31.
13. Wolf, C.; Lerebours, R. J. Org. Chem. 2003, 68, 7551.
14. (a) Silva, A. C.; Souza, A. L. F.; Antunes, O. A. C. J.
Organometal. Chem. 2007, 692, 3104; (b) Perez, R.;
Veronese, D.; Coelho, F.; Antunes, O. A. C. Tetrahedron
Lett. 2006, 47, 1325.
Acknowledgments
15. General procedure for the production of tributylphenyltin:
In a 200 mL reaction flask containing 52 mL of n-BuLi
1.6 M (84 mmol) ꢀ78 °C, it was added bromobenzene
(76 mmol; 8 mL) for 15 min, under vigorous stirring. The
reaction was maintained for 40 min at ꢀ78 °C under
continuous stirring, while the color of the reaction passed
from yellowish to colorless. After that period, SnBuCl3
(1.1 mmol; 0.35 mL) was added for 15 min and the
reaction was left under stirring overnight. The reactional
mixture was neutralized with saturated solution of
(NH3)2SO4 and the aqueous phase was extracted with
hexane. The tributylphenyltin was purified by Kugelrohr
distillation under reduced pressure. Tributylphenyltin—
Financial support from CNPq, CAPES, and FAPERJ,
Brazilian Governmental Financing Agencies, is grate-
fully acknowledged. We are grateful to Professor Delmo
Santiago Vaitsman and to Ms. Katia Ferreira Cavalcan-
te for carrying out Atomic Absorption analysis and to
Professor Simon Garden for careful revision of the
manuscript.
References and notes
1
colorless oil, 7.6 g (81%). H NMR (CDCl3, 200 MHz) d
1. (a) Stille, J. K. Pure Appl. Chem. 1985, 57, 1771; (b) Stille,
J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508; (c)
Hassa, J.; Savignon, M.; Gozzi, C.; Schulz, E.; Lemaire,
M. Chem. Rev. 2002, 102, 1359; (d) Littke, A. F.; Fu, G. C.
Angew. Chem., Int. Ed. 2002, 41, 4176; (e) Espinet, P.;
Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704.
2. (a) Nicolaou, K. C.; Li, Y.; Sugita, K.; Monenschein, H.;
Guntupali, P.; Mitchell, H. J.; Fylaktakidou, K. C.;
Vourloumis, D.; Giannakakou, P.; O’Brate, A. J. Am.
Chem. Soc. 2003, 125, 15443; (b) Kadota, I.; Takamura,
H.; Sato, K.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J.
Am. Chem. Soc. 2003, 125, 46; (c) Lin, S.; Chen, C.; Lee,
Y. J. Org. Chem. 2003, 68, 2968; (d) Boger, D. L.;
Ichikawa, S.; Jing, H. J. Am. Chem. Soc. 2000, 122, 12169;
(e) Kuribayashi, T.; Gohya, S.; Mizuno, Y.; Satoh, S. J.
Carbohydr. Chem. 1999, 18, 383; (f) Nicolaou, K. C.;
King, N. P.; Finlay, M. R. V.; He, Y.; Roschangar, F.;
Vourloumis, D.; Vallberg, H.; Sarabia, F.; Ninkovic, S.;
Hepworth, D. Bioorg. Med. Chem. 1999, 7, 665.
0.87–0.92 (t, 9H), 1.03–1.09 (q, 6H), 1.31–1.38 (q, 6H),
1.50–1.61 (m, 6H), 7.31–7.40 (m, 3H), 7.46–7.48 (m, 2H).
13C NMR (CDCl3, 50 MHz) d 7.55, 13.8, 27.5, 29.2, 128.3,
136.6, 142.2.
16. General procedure for Stille reaction: In a 25 mL reaction
flask containing iodobenzene (1 mmol; 0.204 g) in 30 mL
of EtOH/H2O 40%, tributylphenyltin (1.1 mmol; 0.2 mL),
Pd/CaCO3 (0.01 mmol; 0.021 g) and K2CO3 (2 mmol;
0.280 g) were successively added. The reaction was then
kept under stirring at 80 °C for 24 h. The reactional
mixture was extracted with hexane. The organic phase was
washed with water, brine and 1 M KF solution, and dried
over anhydrous magnesium sulfate. Solution was filtered
under CeliteÒ, the solvent was evaporated and crude
product was analyzed by GC–MS, 1H NMR and 13C
NMR. Biphenyl—1H NMR (CDCl3, 200 MHz) d 7.56 (d,
2H), 7.40 (d, 2H), 7.29 (d, 2H). 13C NMR (CDCl3,
50 MHz) d 140.8, 128.4, 126.9, 126.8. GC–MS: m/z 154, 77.