868
D.S. Gaikwad et al. / C. R. Chimie 14 (2011) 865–868
Table 2 (Continued )
4.3. Spectral data of representative compounds
Entry
Product (4)
Time (min)
Yield (%)a,b
˚
Entry 4e: mp 172–174 C; IR (KBr): 3342, 3160, 2979,
2191, 1658, 1499, 1232, 1040, 971 cmÀ1 1H NMR
(400 MHz, DMSO-d6): = 1.16 (t, 3H, CH3, J = 7.2 Hz),
1.21 (t, 3H, CH3, J = 7.2 Hz), 3.73 (s, OCH3), 3.95 (m, 4H, -
CH2), 4.05 (d, 1H, 2JPH = 18 Hz), 6.82 (t, 1H, J = 2.4 Hz), 6.86
(dt, 1H, J = 2.4, J = 9.2 Hz), 6.96 (d, 1H, J = 8.8 Hz), 7.07 (bs,
2H, -NH2, D2O exchangeable); 13C NMR (100 MHz, DMSO-
;
O
d
h
55
79
O
P
O
O2N
CN
NH2
O
d6):
d 16.1, 16.2, 34.1, 35.5, 46.9, 55.4, 62.1, 62.2, 114.0,
116.6, 118.6, 120.1, 143.8, 155.3, 162.8; 31P-NMR
(162 MHz, DMSO-d6):
Entry 4g: mp 169–170 C; IR (KBr): 3444, 3343, 2891,
2194, 1646, 1426, 1248, 1034, 864 cmÀ1
d
23.39.
˚
O
O
P
O
;
1H NMR
i
30
95
CN
NH2
Br
(400 MHz, DMSO-d6): = 1.14 (t, 3H, CH3, J = 7.2 Hz),
d
1.18 (t, 3H, CH3, J = 7.2 Hz), 3.98 (m, 4H, -CH2), 4.25 (d, 1H,
2JPH = 18.8 Hz), 7.27 (t, 1H, J = 2.4 Hz), 7.38 (bs, 2H, -NH2,
D2O exchangeable), 7.64 (t, 1H, J = 2.4 Hz); 13C NMR
O
Br
(100 MHz, DMSO-d6):
d 16.1, 33.9, 35.3, 47.3, 62.3, 62.5,
119.2, 121.2, 121.7, 127.7, 127.9, 128.5, 144.8, 161.8; 31P-
NMR (162 MHz, DMSO-d6):
d 22.47.
O
O
j
55
74
O
P
CN
Acknowledgement
O
NH2
Authors DMP and KAU thank UGC, New Delhi for
a
All products showed satisfactory spectroscopic data (IR, 1H, 13C and
financial assistance [F.2-3/2007(Policy/SR)] and for
Research Fellowship, respectively.
a
31P NMR).
b
Yields refer to pure, isolated products.
References
3. Conclusion
[1] D. Enders, A.S. Dizier, M.I. Lannou, A. Lenzen, Eur. J. Org. Chem (2006)
29.
[2] E.V. Matveeva, I.L. Odinets, V.A. Kozlov, A.S. Shaplov, T.A. Mastryukova,
Tetrahedron Lett. 47 (43) (2006) 7645.
[3] H.P. Guan, Y.L. Qiu, M.B. Ksebati, E.R. Kern, J. Zemlicka, Tetrahedron 58
(30) (2002) 6047.
[4] (a) S. Hatakeyama, N. Ochi, H. Numata, S. Takano, J. Chem. Soc. Chem.
Commun. (1988) 1202;
(b) R. Gonzalez, N. Martin, C. Seoane, J. Soto, J. Chem. Soc. Perkin Trans.
1 (1985) 1202.
[5] (a) N. Martin, G. Martin, A.C. Seoane, J.L. Maco, A. Albert, F.H. Cano, Ann.
Chem. 7 (1993) 801;
In summary, we have described a practical method for
the rapid synthesis of (2-amino-3-cyano-4H-chromen-4-
yl) phosphonic acid diethyl ester using potassium phos-
phate as an inexpensive catalyst at ambient temperature.
High yields along with simple reaction conditions as well
as easy work-up procedure auger well for the application
of this strategy for the synthesis of (2-amino-3-cyano-4H-
chromen-4-yl) phosphonic acid diethylester.
(b) J.L. Maco, N. Martin, A.M. Grau, C. Seoane, A. Albert, F.H. Cano,
Tetrahedron 50 (11) (1994) 3509.
[6] (a) W.O. Foye, Prinicipi di Chemico Farmaceutica; Piccin: Padova, Italy
(1991) 416;
4. Experimental
(b) L.L. Andreani, E. Lapi, Bull. Chim. Farm 99 (1960) 583;
(c) Y.L. Zhang, B.Z. Chen, K.Q. Zheng, M.L. Xu, X.H. Lei, X.X.B. Yao, Chem.
Abstr 96 (1982) 135383e;
4.1. General
(d) L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem 28
(1993) 517;
(e) E.C. Witte, P. Neubert, A. Roesch, Ger. Offen DE (1986) 3427985;
Chem. Abstr. 104 (1986) 224915f.
IR spectra were recorded on a Perkin–Elmer FT-IR 783
spectrophotometer. NMR spectra were recorded on a
BrukerAC-400 spectrometer in DMSO-d6 using tetra-
methylsilane as internal standard. Mass spectra (LCMS)
were recorded on Shimadzu LCMS 2010, mass spectrome-
ter. Melting points are uncorrected.
[7] C.S. Konkoy, D.B. Fick, S.X. Cai, N.C. Lan, J.F.W. Keana, PCT Int. Appl. WO
0075123, (2000); Chem. Abstr. 134 (2001) 29313a.
[8] D. Arnesto, W.M. Horspool, N. Martin, A. Ramos, C. Seaone, J. Org. Chem.
54 (1989) 3069.
[9] P. Jayashree, G. Shanthi, P.T. Perumal, Synlett. 9 (2009) 0917.
[10] S. Narayana Murthy, B. Madhav, P.V. Reddy, Y.V.D. Nageswar, Tetrahe-
dron Lett. 51 (2010) 3649.
4.2. Typical procedure
[11] (a) D.M. Pore, K.A. Undale, B.B. Dongare, U.V. Desai, Catal Lett 132
(2009) 104;
(b) K.A. Undale, Y.K. Park, K. Park, K. Park, D.H. Dagade, D.M. Pore,
Synlett 6 (2011) 791.
[12] (a) U.V. Desai, D.M. Pore, R.B. Mane, S.B. Solabannavar, P.P. Wadgaon-
kar, Synth. Commun. 34 (2004) 25;
A mixture of salicylaldehyde (1 mmol), malononitrile
(1 mmol), triethylphosphite (1 mmol) and K3PO4 (20 mol
%) in ethanol (5 mL) was stirred at r.t. till the completion of
reaction as monitored by TLC. (Table 2). Then the reaction
mixture was poured into ice water and just filtered to
yield corresponding (2-amino-3-cyano-4H-chromen-4-yl)
phosphonic acid diethyl ester.
(b) U.V. Desai, D.M. Pore, R.B. Mane, S.B. Solabannavar, P.P. Wadgaon-
kar, Synth. Commun 34 (2004) 19;
(c) D.M. Pore, M.S. Soudagar, U.V. Desai, T.S. Thopate, P.P. Wadagaon-
kar, Tetrahedron Lett 47 (2006) 9325.