JOURNAL OF CHEMICAL RESEARCH 2015 229
1
o
1664; H NMR: δ 7.74 (1H, s), 7.32–7.31 (1H, m), 7.11–7.09 (1H, m),
acetate (6d): Yellow solid; yield 96%; m.p. 146 C (petrol ether); IR
6.81–6.79 (2H, m), 4.37 (2H, s), 4.23 (2H, q, J = 7.1 Hz), 1.29 (3H, t,
J = 7.1 Hz); 13C NMR: δ 171.4, 153.6, 151.9, 136.7, 131.6, 129. 5, 122.7,
120.0, 116.4, 109.1, 97.0, 61.3, 49.2, 14.2; MS (EI, 70eV): M+ m/z 257.
Anal. calcd for C14H12N2O3: C, 65.62; H, 4.72; N, 10.93; found: C,
65.33; H, 4.79; N, 11.02%.
(KBr cm-1): ν 2204, 1735, 1650, 1623 cm-1; 1H NMR: δ 8.22 (1H, s), 7.66
(2H, s), 7.61 (1H, d, J = 8.8 Hz), 7.53 (1H, s), 7.28 (1H, s), 7.06-7.04 (2H,
m), 4.37 (4H, s), 4.28-4.23 (4H, q, J = 7.0 Hz), 1.33-1.28 (6H, t, J = 7.1
Hz); 13C NMR: δ 173.9, 171.5, 155.6, 153.6, 152.9, 146.0, 139.4, 135.4,
134.2, 132.1, 129.8, 123.7, 121.3, 121.4, 121.1, 120.2, 119.6, 118.1, 109.5,
97.6, 71.7, 64.2, 61.7, 61.1, 45.6, 41.6, 14.7, 14.6; MS (EI, 70eV): M+ m/z
671. Anal. calcd for C28H22Br2N4O6: C, 50.17; H, 3.31; N, 8.36; found: C,
50.09; H, 3.26; N, 8.41%; HPLC (Daicel OD-H, hexane/iPrOH = 92/8,
1.0 mL min-1, 215 nm) t1 = 27 min (major), t2 = 36 min (minor).
t-Butyl-2-[(6-bromo-3-cyano-2H-chromen-2-ylidene)amino]
o
acetate (5c): Pale yellow solid; yield 98%; m.p. 143 C (petrol ether);
IR (KBr cm-1): ν 2235, 1737, 1663, 1598; 1H NMR: δ 7.65 (1H, s), 7.59
(1H, dd, J = 8.8, 2.3 Hz), 7.52 (1H, d, J = 2.3 Hz), 7.02 (1H, d, J = 8.8
Hz), 4.28 (2H, s), 1.50 (9H, s); 13C NMR: δ 168.5, 152.6, 147.5, 142.4,
136.2, 131.0, 119.1, 117.7, 117.0, 114.0, 108.0, 81.5, 49.7, 28.1 (3C); MS
(EI, 70eV): M+ m/z 363. Anal. calcd for C16H15BrN2O3: C, 52.91; H,
4.16; N, 7.71; found: C, 52.80; H, 4.27; N, 7.66%.
Conclusions
In summary, new 2-iminochromene dimers were successfully
prepared under mild condition. In addition, siloxane-
substituted FOXAP ligand L(f) was successfully applied in the
enantioselective self-Michael reactions of 5 with satisfactory
yields (up to 99%) and excellent ee values (up to 97% ee).
Further investigation of the range of the substrate, the absolute
configuration of the product, and the application of the dimers
are underway.
Ethyl-2-[(6-bromo-3-cyano-2H-chromen-2-ylidene)amino]acetate
(5d): Pale yellow solid; yield 83%; m.p. 128 oC (petrol ether); IR (KBr
cm-1): ν 2233, 1737, 1670, 1190; 1H NMR: δ 7.68 (1H, s), 7.59 (1H, dd,
J = 8.8, 2.3 Hz), 7.53 (1H, d, J = 2.2 Hz), 7.04 (1H, d, J = 8.8 Hz), 4.36
(2H, s), 4.23 (2H, q, J = 7.1 Hz), 1.30 (3H, t, J = 7.1 Hz); 13C NMR:
δ 169.5, 152.6, 147.6, 142.7, 136.3, 131.1, 119.1, 117.7, 117.1, 114.0,
107.9, 61.1, 48.9, 14.2; MS (EI, 70eV): M+ m/z 335. Anal. calcd for
C14H11BrN2O3: C, 50.17; H, 3.31; N, 8.36; found: C, 50.05; H, 3.44; N,
3.26%.
t-Butyl-2-(2-[(2-(t-butoxy)-2-oxoethyl)amino]-3-cyano-4H-
chromen-4-yl)-2-[(3-cyano-2H-chromen-2-ylidene)amino]acetate
(6a): White solid; yield 98%; m.p. 138 oC (petrol ether); IR (KBr cm-1):
ν 2209, 1736, 1657, 1620 cm-1; 1H NMR: δ 8.46 (1H, br s), 8.29 (1H, s),
7.71–7.55 (2H, m), 7.50–7.45 (2H, m), 7.33–7.17 (2H, m), 7.16–6.96
(2H, m), 4.55 (2H, s), 4.22–4.09 (1H, m), 2.33–2.21 (1H, m), 1.49 (9H,
s), 1.30 (9H, s); 13C NMR: δ 175.9, 168.1, 157.2, 155.4, 152.2, 145.8,
138.5, 133.3, 132.6, 128.3, 126.8, 126.2, 123.1, 121.0, 120.7, 118.4,
117.4, 117.2, 109.6, 98.3, 81.9, 81.6, 70.7, 65.4, 45.8, 42.0, 28.4 (6C);
MS (EI, 70eV): M+ m/z 569. Anal. calcd for C32H32N4O6: C, 67.59; H,
5.67; N, 9.85; found: C, 66.98; H, 5.73; N, 9.81%; HPLC (Daicel OD-H,
hexane/iPrOH = 87/13, 1.0 mL min-1, 215 nm) t1 = 17 min (major), t2 =
21 min (minor).
The authors acknowledge financial assistance from the
National Natural Science Foundation of China (Grant no.
KZ200610011006), and the National Technological Project
of the Manufacture and Innovation of Key New Drugs
(2009ZX09103-143).
Received 6 March 2015; accepted 23 March 2015
Paper 1503235 doi: 10.3184/174751915X14279896539656
Published online: 13 April 2015
References
1
M. Costa, F. Areias, L. Abrunhosa, A. Venâncio and F. Proença, J. Org.
Chem., 2008, 73, 1954.
2
M. Curini, G. Cravotto, F. Epifano and G. Giannone, Curr. Med. Chem.,
2006, 13, 199.
Ethyl-2-(3-cyano-2-[(2-ethoxy-2-oxoethyl)amino]-4H-chromen-4-
yl)-2-[(3-cyano-2H-chromen-2-ylidene)amino]acetate (6b): White
solid; yield 93%; m.p. 131 oC (petrol ether). IR (KBr cm-1): ν 2212, 1733,
1644, 1610 cm-1; 1H NMR: δ 8.41 (1H, br s), 8.22 (1H, s), 7.74–7.59 (2H,
m), 7.48–7.42 (2H, m), 7.36–7.19 (2H, m), 7.14–6.89 (2H, m), 4.33 (4H,
s), 4.27–4.24 (4H, q, J = 6.8 Hz), 1.32–1.26 (6H, t, J = 7.1 Hz); 13C NMR:
δ 173.6, 170.3, 155.6, 154.1, 152.0, 147.8, 139.3, 133.6, 132.6, 129.5,
126.8, 125.4, 124.6, 121.0, 120.1, 118.2, 117.9, 117.2, 107.5, 95.4, 71.7,
62.8, 61.8, 61.2, 44.1, 41.2, 24.3, 24.2; MS (EI, 70eV): M+ m/z 513. Anal.
calcd for C28H24N4O6: C, 65.62; H, 4.72; N, 10.93; found: C, 65.58; H,
4.80; N, 10.88%; HPLC (Daicel OD-H, hexane/iPrOH = 88/12, 0.8 mL
min-1, 215 nm) t1 = 21 min (major), t2 = 26 min (minor).
t-Butyl-2-(6-bromo-2-[(2-(t-butoxy)-2-oxoethyl]amino)-3-cyano-
4H-chromen-4-yl)-2-[(6-bromo-3-cyano-2H-chromen-2-ylidene)
amino]acetate (6c): Yellow solid; yield 99%; m.p. 152 oC (petrol
ether); IR (KBr cm-1): ν 2210, 1732, 1654, 1619 cm-1. 1H NMR: δ
8.01 (1H, s), 7.66 (1H, s), 7.58–7.54 (2H, m), 7.47 (1H, d, J = 2.1
Hz), 7.31–7.29 (1H, m), 6.98–6.86 (2H, m), 4.46 (1H, d, J = 2.6 Hz),
4.21–4.03 (2H, m), 2.05 (1H, s), 1.49 (9H, s), 1.44 (9H, s); 13C NMR:
δ 170.4, 167.3, 156.7, 154.6, 152.1, 147.0, 139.8, 135.4, 134.2, 132.1,
129.1, 122.4, 121.5, 121.2, 121.1, 120.8, 118.8, 117.6, 109.5, 98.5, 82.0,
81.2, 71.0, 64.3, 45.2, 41.0, 29.1, 28.41 (6C); MS (EI, 70eV): M+ m/z
725. Anal. calcd for C32H30Br2N4O6: C, 52.91; H, 4.16; N, 7.71; found:
C, 52.66; H, 4.03; N, 7.82%; HPLC (Daicel OD-H, hexane/iPrOH =
90/10, 1.0 mL min-1, 215 nm) t1 = 25 min (major), t2 = 32 min (minor).
Ethyl-2-(6-bromo-3-cyano-2-[(2-ethoxy-2-oxoethyl)amino]-4H-
chromen-4-yl)-2-[(6-bromo-3-cyano-2H-chromen-2-ylidene)amino]
3
4
W. Li, H. Liu, X. Jiang and Jian Wang, ACS Catal., 2012, 2, 1535.
R. O. S. Kitamura, P. Romoff, M. C. M. Young, M. J. Kato and J. H. G. Lago,
Phytochemistry, 2006, 67, 2398.
A. M. El-Agrody, M. S. A. El-Latif, N. A. El-Hady, A. H. Fakary and A. H.
Bedair, Molecules, 2001, 6, 519.
A. A. Emmanuel-Giota, K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K. E.
Litinas and D. N. J. Nicolaides, Heterocycl. Chem., 2001, 38, 717.
I. Manolov and N. D. Danchev, Eur. J. Med. Chem., 1995, 30, 531.
Z. M. Nofal, M. I. El-Zahar and S. S. A. El-Karim, Molecules, 2000, 5, 99.
L. Moafi, S. Ahadi and A. Bazgir, Tetrahedron Lett., 2010, 51, 6270.
5
6
7
8
9
10 N. Karimi, H. Yahyavi, L. Ma’mani, M. Mahdavi, A. Foroumadi and A.
Shafiee, Synth. Commun., 2014, 44, 2826.
11 S. Kumar, Green Process. Synth., 2014, 3, 223.
12 A. Zonouzi, F. Hosseinzadeh, N. Karimi, R. Mirzazadeh, S. W. Ng, ACS
Comb. Sci., 2013, 15, 240.
13 W. Li, J. Huang and J. Wang, Org. Biomol. Chem., 2013, 11, 400.
14 R. P. Haugland, Handbook of fluorescent probes and research products, 9th
edn, Molecular Probes, 2002.
15 G. R. Green, J. M. Evans and A. K. Vong, In Comprehensive heterocyclic
chemistry II, eds A. Katritzky, C. W. Rees, E. F. V. Scriven. Pyrans and their
benzo derivatives: applications. Pergamon, Oxford, 1996, Vol. 5, Chap. 5.09,
pp 469–500.
16 T. R. Burke, B. Lim, V. E. Marquez, Z. H. Li, J. B. Bolen, I. Stefanova and I.
D. J. Horak, J. Med. Chem., 1993, 36, 425.
17 C. K. Huang, F. Y. Wu and Y. X. Ai, Bioorg. Med. Chem. Lett., 1995, 5, 2423.
18 L. Dai, D. Xu, L. Tang and Z. Zhou. ChemCatChem (in press doi: 10.1002/
cctc.201403048R1).
19 J. Volmajer, R. Toplak, I. Leban and A. M. Le Marechal, Tetrahedron, 2005,
61, 7012.
20 P. E. Shynkarenko, S. V. Vlasov, S. M. Kovalenko, S. V. Shishkina, O. V.
Shishkin and V. P. Chernykh, J. Heterocycl. Chem., 2010, 47, 800.