An Unnatural Phosphotriesterase
A R T I C L E S
Scheme 1. Hydrolysis of Paraoxon at Basic pH Catalyzed by PTE
Scheme 2. Catalytic Cycle of PTEs
Figure 1. Aromatic interactions between Tyr309, diethyl-methoxyphe-
nylphosphate, and Phe132 in the crystal structure of arPTE (PDB ID: 2R1N).
Amino acid side chains forming face-face and edge-face aromatic stacking
interactions with the aromatic group of the substrate are shown in magenta.
The Fe(II) (orange), Co(II) (pink), and water/hydroxyl (red) molecules in
the active site are shown as spheres.
proteins are of interest because of their rapid evolution into
efficient catalysts of the hydrolysis of synthetic OPs and their
potential use for OP detoxification because these compounds
pose a serious health and environmental risk.16
substrate binding in the PTEs is driven in part by metal-substrate
interactions,20 an important role for aromatic and hydrophobic
enzyme-substrate (ES) interactions is implied by crystal
structures of Michaelis and product complexes, which show the
aromatic ring of the leaving group sandwiched between the
aromatic groups of Tyr309, Trp131, and Phe132 (Figure 1).22,27
Moreover, mutation of these residues to alanine results in an
increase in the Michaelis constant (KM),29,30 suggesting that these
residues are involved in the formation of the Michaelis complex.
However, theoretical studies have either indicated that the
substrate approaches for nucleophilic attack without significant
aromatic interactions with these residues,31,32 or have omitted
these residues altogether.33
There have been several reports of protein engineering
experiments to improve the catalytic function of the PTEs,
involving rational design,29,30 combinatorial libraries,34,35 and
laboratory (directed) evolution.18,27,36-38 Most of these studies
have focused on improving inefficient, promiscuous, activities
of the PTEs, such as the turnover of OPs used as chemical
warfare agents or other slowly turned over insecticides. Attempts
to improve already efficient activities, such as the turnover of
paraoxon, have produced no, or only modest, improvements in
arPTE in our laboratories, despite screening hundreds of
thousands of variants.27,37 The inability to significantly improve
the arPTE-mediated turnover of paraoxon by targeted and
random mutagenesis suggests that there is likely to be little easily
accessible sequence space available for improvement of this
activity using naturally occurring AAs.
Many studies of the structure and function of the bacterial
PTEs have been described, with crystal structures of arPTE and
pdPTE revealing very close structural similarity (backbone rmsd
of 0.34 Å) and nearly identical active sites with a binuclear
metal ion center.17,18 Each metal ion plays a specific role in the
reaction (Scheme 1), with the more solvent exposed ꢀ-metal
ion apparently involved in substrate coordination and the
R-metal ion involved in stabilizing a hydroxide ion as the
initiating nucleophile.19-23 Paraoxon is known to be hydrolyzed
via an SN2-type reaction with net inversion of configuration at
the phosphorus center,24 and the rate of product release (k5)
has been identified as the slowest and rate-limiting step of the
catalytic cycle (Scheme 2).20,25-27
Discussion of the catalytic power of enzymes often focuses
on the chemical step,28 but the subtle interactions that facilitate
substrate binding and product release are also important; without
fast rates for formation of the Michaelis complex and product
release, the efficiency of the chemical step can be obscured.
Because the chemical step is not rate-limiting for PTE-catalyzed
paraoxon hydrolysis, the PTEs are a valuable model system to
study these physical steps in the catalytic cycle. Although
(15) Serdar, C. M.; Gibson, D. T.; Munnecke, D. M.; Lancaster, J. H. Appl.
EnViron. Microbiol. 1982, 44, 246–249.
(16) Jaga, K.; Dharmani, C. ReV. EnViron. Health 2006, 21, 57–67.
(17) Benning, M. M.; Kuo, J. M.; Raushel, F. M.; Holden, H. M.
Biochemistry 1995, 34, 7973–7978.
(18) Yang, H.; Carr, P. D.; McLoughlin, S. Y.; Liu, J. W.; Horne, I.; Qiu,
X.; Jeffries, C. M. J.; Russell, R. J.; Oakeshott, J. G.; Ollis, D. L.
Protein Eng. 2003, 16, 241–241.
In this study, we describe the incorporation of unnatural
7-methyl- and 7-hydroxycoumarinyl amino acids (Mco and Hco;
(19) Aubert, S. D.; Li, Y. C.; Raushel, F. M. Biochemistry 2004, 43, 5707–
5715.
(29) Chen-Goodspeed, M.; Sogorb, M. A.; Wu, F.; Hong, S. B.; Raushel,
F. M. Biochemistry 2001, 40, 1325–1331.
(20) Hong, S. B.; Raushel, F. M. Biochemistry 1996, 35, 10904–10912.
(21) Jackson, C.; Kim, H. K.; Carr, P. D.; Liu, J. W.; Ollis, D. L. Biochim.
Biophys. Acta 2005, 1752, 56–64.
(30) Jackson, C. J.; Weir, K.; Herlt, A.; Khurana, J.; Sutherland, T. D.;
Horne, I.; Easton, C.; Russell, R. J.; Scott, C.; Oakeshott, J. G. Appl.
EnViron. Microbiol. 2009, 75, 5153–5156.
(22) Jackson, C. J.; Foo, J. L.; Kim, H. K.; Carr, P. D.; Liu, J. W.; Salem,
G.; Ollis, D. L. J. Mol. Biol. 2008, 375, 1189–1196.
(23) Foo, J. L.; Jackson, C. J.; Carr, P. D.; Kim, H. K.; Schenk, G.; Gahan,
L. R.; Ollis, D. L. Biochem. J. 2010, 429, 313–321.
(24) Lewis, V. E.; Donarski, W. J.; Wild, J. R.; Raushel, F. M. Biochemistry
1988, 27, 1591–1597.
(31) Koca, J.; Zhan, C. G.; Rittenhouse, R. C.; Ornstein, R. L. J. Am. Chem.
Soc. 2001, 123, 817–826.
(32) Zhang, X.; Wu, R. B.; Song, L. C.; Lin, Y. C.; Lin, M. H.; Cao, Z. X.;
Wu, W.; Mo, Y. R. J. Comput. Chem. 2009, 30, 2388–2401.
(33) Chen, S. L.; Fang, W. H.; Himo, F. J. Phys. Chem. B 2007, 111, 1253–
1255.
(25) Caldwell, S. R.; Newcomb, J. R.; Schlecht, K. A.; Raushel, F. M.
Biochemistry 1991, 30, 7438–7444.
(34) Griffiths, A. D.; Tawfik, D. S. EMBO J. 2003, 22, 24–35.
(35) Hill, C. M.; Li, W. S.; Thoden, J. B.; Holden, H. M.; Raushel, F. M.
J. Am. Chem. Soc. 2003, 125, 8990–8991.
(26) Caldwell, S. R.; Raushel, F. M.; Weiss, P. M.; Cleland, W. W.
Biochemistry 1991, 30, 7444–7450.
(27) Jackson, C. J.; Foo, J. L.; Tokuriki, N.; Afriat, L.; Carr, P. D.; Kim,
H. K.; Schenk, G.; Tawfik, D. S.; Ollis, D. L. Proc. Natl. Acad. Sci.
U.S.A. 2009, 106, 21631–21636.
(36) Cho, C. M.; Mulchandani, A.; Chen, W. Appl. EnViron. Microbiol.
2004, 70, 4681–5.
(37) McLoughlin, S. Y.; Jackson, C.; Liu, J. W.; Ollis, D. Protein
Expression Purif. 2005, 41, 433–440.
(28) Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H. B.; Olsson,
M. H. M. Chem. ReV. 2006, 106, 3210–3235.
(38) Tokuriki, N.; Tawfik, D. S. Nature 2009, 459, 668–73.
9
J. AM. CHEM. SOC. VOL. 133, NO. 2, 2011 327