ChemComm
Please do not adjust margins
Page 4 of 4
COMMUNICATION
Journal Name
12 X. Feng, W. Pisula, K. Müllen, Pure Appl. Chem. 2009, 81,
The reason for this is probably the sterically demanding phenyl
ring, which is twisted around the dihedral angle Dα by 67.58 °
DOI: 10.1039/C9CC05451K
2203-2224.
13 N. Saino, T. Kawaji, T. Ito, Y. Matsushita, S. Okamoto,
Tetrahedron Lett. 2010, 51, 1313-1316.
14 M. Zander, Chem. Ber. 1959, 92, 2749-2751.
15 K. F. Lang, M. Zander, Chem. Ber. 1965, 98, 597-600.
16 E. Clar, J. Chem. Soc. 1949.
17 Y. Suzuki, K. Yamada, K. Watanabe, T. Kochi, Y. Ie, Y. Aso, F.
Kakiuchi, Org. Lett. 2017, 19, 3791-3794.
18 W. E. Acree, A. I. Zvaigzne, J. C. Fetzer, Appl. Spectrosc. 1990,
44, 1193-1195.
19 S. A. Tucker, A. I. Zvaigzne, W. E. Acree, J. C. Fetzer, M.
Zander, Appl. Spectrosc. 1991, 45, 424-428.
20 M. Takase, T. Narita, W. Fujita, M. S. Asano, T. Nishinaga, H.
Benten, K. Yoza, K. Müllen, J. Am. Chem. Soc. 2013, 135,
8031-8040.
21 F. Ammon, S. T. Sauer, R. Lippert, D. Lungerich, D. Reger, F.
Hampel, N. Jux, Org. Chem. Front. 2017, 4, 861-870.
22 P. Rietsch, F. Witte, S. Sobottka, G. Germer, A. Becker, A.
Guttler, B. Sarkar, B. Paulus, U. Resch-Genger, S. Eigler,
Angew. Chem. Int. Ed. 2019, 58, 8235-8239.
23 R. Kurata, K. Kaneda, A. Ito, Org Lett 2017, 19, 392-395.
24 A. Gourdon, S. K. Sadhukhan, C. Viala, Synthesis 2003, 1521-
1525.
(
Fig. 5A), and the three hydrogen atoms (Fig. 5C). In addition,
the helical chirality is visible in the crystal structure as
enantiomeric pairs (Fig. 4B). The enantiomers of [4]helicenes
cannot be separated at RT as the racemisation barrier is below
25 kcal/mol.[40-41] Nevertheless, we used density functional
theory (DFT) at the B3LYP/6-31G(d) level of theory to calculate
the racemisation barrier of 4 [42-43]
Fig. S18).
,
which is about 10 kcal/mol
(
Table 2. Angles between planes A-D (Fig. 5A) of 4 and [4]helicene[39] derived from
crystallographic data.
A-B
A-C
A-D
B-C
B-D
C-D
4
5.24°
16.76°
32.46°
11.86°
27.23°
16.54°
[4]
helicene
10.26°
18.12°
26.68°
7.87°
16.55°
8.83°
In conclusion, we reported a novel pentaphene derivative,
which is closely related to HBCs, however, with only 41 sp2-
carbon atoms, instead of 42. Consequently, the pentaphene 4 is
chiral and crystallizes as enantiomeric pair with a distance of the
π-planes of almost 1 nm. This substitution pattern results in an
enhanced fluorescence in solution and the solid state compared
to the HBC motif. The presented synthetic strategy to
pentaphenes could lead to more advanced derivatives with
improved photophysical properties.
25 D. Lungerich, J. F. Hitzenberger, M. Marcia, F. Hampel, T.
Drewello, N. Jux, Angew. Chem. Int. Ed. 2014, 53, 12231-
12235.
26 W. Dilthey, W. Schommer, O. Trösken, Ber. Dtsch. Chem.
Ges. 1933, 66, 1627-1628.
27 G. Zimmermann, U. Nuechter, S. Hagen, M. Nuechter,
Tetrahedron Lett. 1994, 35, 4747-4750.
28 P. M. Donovan, L. T. Scott, J. Am. Chem. Soc. 2004, 126,
3108-3112.
29 H. C. Shen, J. M. Tang, H. K. Chang, C. W. Yang, R. S. Liu, J.
Org. Chem. 2005, 70, 10113-10116.
30 C. A. Merlic, M. E. Pauly, J. Am. Chem. Soc. 1996, 118, 11319-
11320.
Acknowledgement
31 R. Rathore, C. L. Burns, J. Org. Chem. 2003, 68, 4071-4074.
32 L. B. A. Johansson, A. Niemi, J. Phys. Chem. 1987, 91, 3020-
3023.
33 Valeur, Molecular Fluorescence: Principles and Applications,
Wiley VCH, Somerset, 2002.
Conflicts of interest
There are no conflicts to declare.
34 C. Reichardt, Chem. Rev. 1994, 94, 2319-2358.
35 K. Hoffmann, B. Dietzel, B. Schulz, G. Reck, A. Hoffmann, I.
Orgzall, U. Resch-Genger, F. Emmerling, J. Mol. Struct. 2011,
988, 35-46.
References
1
I. Diez-Perez, Z. Li, J. Hihath, J. Li, C. Zhang, X. Yang, L. Zang,
Y. Dai, X. Feng, K. Müllen, N. Tao, Nat. Commun. 2010, 1, 31.
L. Chen, K. S. Mali, S. R. Puniredd, M. Baumgarten, K. Parvez,
W. Pisula, S. De Feyter, K. Müllen, J. Am. Chem. Soc. 2013,
135, 13531-13537.
36 P. T. Herwig, V. V. Enkelmann, O. Schmelz, K. Müllen, Chem.
Eur. J. 2000, 6, 1834-1839.
2
37 G. R. Desiraju, A. Gavezzotti, Acta Crystallogr. Sect. B: Struct.
Sci. 1989, 45, 473-482.
38 G. R. Desiraju, A. Gavezzotti, J. Chem. Soc., Chem. Commun.
1989, 621-623.
3
4
5
6
7
8
9
H. Seyler, B. Purushothaman, D. J. Jones, A. B. Holmes, W. W.
H. Wong, Pure Appl. Chem. 2012, 84, 1047-1067.
Y. Liu, T. Marszalek, K. Müllen, W. Pisula, X. Feng, Chem.
Asian J. 2016, 11, 2107-2112.
39 P. F. Thomson, D. Parrish, P. Pradhan, M. K. Lakshman, J.
Org. Chem. 2015, 80, 7435-7446.
40 S. Grimme, S. D. Peyerimhoff, Chem. Phys. 1996, 204, 411-
417.
F. Hinkel, D. Cho, W. Pisula, M. Baumgarten, K. Müllen,
Chem. Eur. J. 2015, 21, 86-90.
41 H. A. Staab, M. Diehm, C. Krieger, Tetrahedron Lett. 1995, 36,
2967-2970.
X. Dou, W. Pisula, J. Wu, G. J. Bodwell, K. Müllen, Chem. Eur.
J. 2008, 14, 240-249.
42 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J.
Phys. Chem. 1994, 98, 11623-11627.
X. Feng, W. Pisula, T. Kudernac, D. Wu, L. Zhi, S. De Feyter, K.
Müllen, J. Am. Chem. Soc. 2009, 131, 4439-4448.
R. Liu, D. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2011,
133, 15221-15223.
43 A. D. Becke, J. Phys. Chem. 1993, 98, 5648-5652.
Y. Byun, A. Coskun, Chem. Mater. 2015, 27, 2576-2583.
10 F. Cataldo, O. Ursini, G. Angelini, S. Iglesias-Groth, Fuller.
Nanotub. Car. N. 2011, 19, 713-725.
11 Y.-J. Huang, T.-C. Li, C.-W. Chang, H.-H. Chen, Liq. Cryst. 2017,
44, 1253-1258.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins