New Portisins Arising from Hydroxycinnamic Acids
J. Agric. Food Chem., Vol. 55, No. 15, 2007 6355
group in C-4 (ring D), which prevents nucleophilic attack of
bisulfite in that position.
Anthocyanin-pyruvic acid adducts and hydroxycinnamic
acids, the precursors of the newly formed pigments reported
herein, are present in appreciable amounts in red wines (12,
(17) Fulcrand, H.; Benabdeljalil, C.; Rigaud, J.; Cheynier, V.;
Moutounet, M. A new class of wine pigments generated by
reaction between pyruvic acid and grape anthocyanins. Phy-
tochemistry 1998, 47, 1401-1407.
(
18) Fulcrand, H.; Cameira dos Santos, P. J.; Sarni-Manchado, P.;
Cheynier, V.; Favre-Bonvin, J. Structure of new anthocyanin-
derived wine pigments. J. Chem. Soc., Perkin Trans. 1 1996,
15, 17, 21-26). In fact, pigments derived from hydroxycinnamic
acids have already been identified in wines (18, 20). The
characterization of these pigments highlights new chemical
pathways involving anthocyanin-pyruvic acid derivatives as
precursors for the formation of new pigments in subsequent
stages of wine aging that may contribute to its color evolution.
3
5-739.
(
19) Hayasaka, Y.; Asenstorfer, R. E. Screening for potential pigments
derived from anthocyanins in red wine using nanoelectrospray
tandem mass spectrometry. J. Agric. Food Chem. 2002, 50, 756-
761.
(
(
(
20) Schwarz, M.; Jerz, G.; Winterhalter, P. Isolation and structure
of pinotin A, a new anthocyanin derivative from Pinotage wine.
Vitis 2003, 42, 105-106.
21) Mateus, N.; de Freitas, V. A. P. Evolution and stability of
anthocyanin-derived pigments during Port wine aging. J. Agric.
Food Chem. 2001, 49, 5217-5222.
22) Ong, B. Y.; Nagel, C. W. Hydroxycinnamic acid-tartaric acid
ester content in mature grapes and during the maturation of white
Riesling grapes. Am. J. Enol. Vitic. 1978, 29, 277-281.
ACKNOWLEDGMENT
We thank Dra. Z e´ lia Azevedo for the LC/DAD-MS analysis.
We also thank Eng. Pedro S a´ from the Sogevinus S.A. Co. for
supplying wine samples.
LITERATURE CITED
(
1) Brouillard, R. The in ViVo expression of anthocyanins colour in
plants. Phytochemistry 1983, 22, 1311-1323.
(23) Somers, T. C.; Verette, E.; Pocock, K. F. Hydroxycinnamates
esters of V. Vinifera: changes during white vinification and
effects of exogenous enzyme hydrolysis. J. Sci. Food Agric.
1987, 40, 67-78.
(2) Von Elbe, J. H.; Schwartz, S. J. Colorants. In Food Chemistry,
3
6
rd ed.; Fennema, O. R., Ed.; Dekker: New York, 1996; pp
51-723.
(
(
(
(
3) Brouillard, R.; Dangles, O. Anthocyanin molecular interac-
tions: the first step in the formation of new pigments during
wine aging? Food Chem. 1994, 51, 365-371.
4) Goto, T.; Kondo, T. Structure and molecular stacking of
anthocyaninssflower color variation. Angew. Chem. Int. 1991,
(24) Singleton, V. L.; Zaya, J.; Trousdale, E. Compositional changes
in ripening grapes: caftaric and coutaric acids. Vitis 1986, 25,
1
07-117.
25) Waterhouse, A. L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002,
57, 21-36.
26) Haslam, E. Plant Polyphenols, Vegetable Tannins ReVisited;
Cambridge University Press: Cambridge, U.K., 1989.
27) Mateus, N.; Silva, A. M. S.; Rivas-Gonzalo, J. C.; Santos-Buelga,
C.; Freitas, V. A new class of blue anthocyanin-derived pigments
isolated from red wines. J. Agric. Food Chem. 2003, 51, 1919-
(
(
(
9
3
0, 17-33.
5) Mistry, T. V.; Cai, Y.; Lilley, T. H.; Haslam, E. Polyphenol
interactions. Part 5. Anthocyanin copigmentation. J. Chem. Soc.,
Perkin Trans. 2 1991, 1287-1296.
6) Atanasova, V.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Effect
of oxygenation on polyphenol changes occurring in the course
of wine-making. Anal. Chim. Acta 2002, 458, 15-27.
7) Somers, T. C. The polymeric nature of wine pigments. Phy-
tochemistry 1971, 10, 2175-2186.
1
923.
(
(
(
28) Mateus, N.; Oliveira, J.; Santos-Buelga, C.; Silva, A. M. S.; de
Freitas, V. A. P. NMR structure characterization of a new
vinylpyranoanthocyanin-catechin pigment. Tetrahedron Lett.
(
(
8) Liao, H.; Cai, Y.; Haslam, E. Polyphenols interactions. Antho-
cyanins: Copigmentation and colour changes in red wines. J.
Agric. Food Chem. 1992, 59, 299-305.
2
004, 45, 3455-3457.
29) He, J.; Santos-Buelga, C.; Mateus, N.; de Freitas, V. Isolation
and quantification of oligomeric pyranoanthocyanin-flavanol
pigments from red wines by combination of column chromato-
graphic techniques. J. Chromatogr., A 2006, 1134, 215-225.
30) Oliveira, J.; Fernandes, V.; Miranda, C.; Santos-Buelga, C.; Silva,
A.; de Freitas, V.; Mateus, N. Color properties of four cyanidin-
pyruvic acid adducts. J. Agric. Food Chem. 2006, 54, 6894-
(9) Rivas-Gonzalo, J. C.; Bravo-Haro, S.; Santos-Buelga, C. Detec-
tion of compounds formed through the reaction of malvidin
3
-monoglucoside and catechin in the presence acetaldehyde. J.
Agric. Food Chem. 1995, 43, 1444-1449.
(
(
(
10) Timberlake, C. F.; Bridle, P. Interactions between anthocyanins,
phenolic compounds and acetaldehyde and their significance in
red wines. Am. J. Enol. Vitic. 1976, 27, 97-105.
6
903.
(31) Bax, A.; Subramanian, S. Sensitivity enhanced two-dimensional
11) Vivar-Quintana, A. M.; Santos-Buelga, C.; Francia-Aricha, E.;
Rivas-Gonzalo, J. C. Formation of anthocyanin-derived pigments
in experimental red wines. Food Sci. Technol. Int. 1999, 5, 347.
12) Mateus, N.; Pascual-Teresa, S.; Rivas-Gonzalo, J. C.; Santos-
Buelga, C.; de Freitas, V. Structural diversity of anthocyanin-
derived pigments in port wines. Food Chem. 2002, 76, 335-
heteronuclear shift correlation NMR spectroscopy. J. Magn. Res.
1
986, 67, 565-569.
(
32) Bax, A.; Summers, M. F. 1H and 13C assignments from
sensitivity-enhanced detection of heteronuclear multiple-bond
connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc.
1
986, 108, 2093-2094.
3
42.
(
33) Mateus, N.; Oliveira, J.; Pissarra, J.; Gonz a´ lez-Param a´ s, A. M.;
Rivas-Gonzalo, J. C.; Santos-Buelga, C.; Silva, A. M. S.; de
Freitas, V. A new vinylpyranoanthocyanin pigment occurring
in aged red wine. Food Chem. 2006, 97, 689-695.
34) Mateus, N.; Oliveira, J.; Gonz a´ lez-Param a´ s, A. M.; Santos-
Buelga, C.; de Freitas, V. Screening of portisins (vinylpyra-
noanthocyanin pigments) in port wine by LC/DAD-MS. Food
Sci. Technol. Int. 2005, 11, 353-358.
(
13) Francia-Aricha, E. M.; Guerra, M. T.; Rivas-Gonzalo, J. C.;
Santos-Buelga, C. New anthocyanin pigments formed after
condensation with flavanols. J. Agric. Food Chem. 1997, 45,
2
262-2266.
(
(
14) Salas, E.; Atanasova, V.; Poncet-Legrand, C.; Meudec, E.;
Mazauric, J. P.; Cheynier, V. Demonstration of the occurrence
of flavanol-anthocyanin adducts in wine and in model solutions.
Anal. Chim. Acta 2004, 513, 325-332.
(
15) 15) Bakker, J.; Timberlake, C. F. Isolation, identification, and
characterization of new color-stable anthocyanins occurring in
some red wines. J. Agric. Food Chem. 1997, 45, 35-43.
16) He, J.; Santos-Buelga, C.; Silva, A. M. S.; Mateus, N.; de Freitas,
V. Isolation and structural characterization of new anthocyanin-
derived pigments in aged red wines. J. Agric. Food Chem. 2006,
(35) Chatonnet, P.; Dubourdieu, D.; Boidron, J. N.; Lavigne, V.
Synthesis of volatile phenols by Saccharomyces cereVisiae in
wines. J. Sci. Food Agric. 1993, 62, 191-202.
(36) Schwarz, M.; Wabnitz, T. C.; Winterhalter, P. Pathway leading
to the formation of anthocyanin-vinylphenol adducts and related
pigments in red wines. J. Agric. Food Chem. 2003, 51, 3682-
3687.
(
5
4, 9598-9603.