D
M. Kiamehr et al.
Letter
Synlett
spectrum of compound 3d, there are also a three-proton
triplet, doublet, and a singlet at 1.24, 1.49, and 2.27 ppm,
respectively, which can be assigned to the three CH3 groups.
A possible mechanism of the formation of products 3a–
h is illustrated in Scheme 4. The ZnBr2-mediated Knoevena-
gel condensation of N-acrylanthranilic aldehyde 1 with pyr-
azolone 2 leads to the formation of an intermediate which
can exist in an exo or endo orientation. The stereochemistry
of the products depends on the stereochemical orientation
of the dienophile in the transition state of the subsequent
intramolecular hetero Diels–Alder reaction. The reaction
seems to proceed selectively via the endo transition state, as
exclusively the formation of the cis-configured isomers was
observed. This might be explained by electronic reasons.
In conclusion, we have synthesized what are, to the best
23519. (h) Martín-Acosta, P.; Feresin, G.; Tapia, A.; Estévez-
Braun, A. J. Org. Chem. 2016, 81, 9738. (i) Majumdar, K. C.; Taher,
A.; Ponra, S. Synthesis 2010, 4043.
(3) (a) Ghandi, M.; Mohammadimehr, E.; Sadeghzadeh, M.;
Bozcheloei, A. H. Tetrahedron 2011, 67, 8484. (b) Moghaddam, F.
M.; Khodabakhshi, M. R.; Kiamehr, M.; Ghahremannejad, Z. Tet-
rahedron Lett. 2013, 54, 2685. (c) Ghandi, M.; Nazeria, M. T.;
Kubicki, M. Tetrahedron 2013, 69, 4979. (d) Ghandi, M.;
Sheibani, S.; Sadeghzadeh, M.; Daha, F. J.; Kubicki, M. J. Iran.
Chem. Soc. 2013, 10, 1057.
(4) (a) Bakthadoss, M.; Kannan, D.; Sivakumar, N.; Malathi, P.;
Manikandan, V. Org. Biomol. Chem. 2015, 13, 5597.
(b) Moghaddam, F. M.; Kiamehr, M.; Khodabakhshi, M. R.;
Mirjafary, Z.; Fathi, S.; Saeidian, H. Tetrahedron 2010, 66, 8615.
(c) Moghaddam, F. M.; Kiamehr, M.; Taheri, S.; Mirjafary, Z. Helv.
Chim. Acta 2010, 93, 964.
(5) Kiamehr, M.; Alipour, B.; Mohammadkhani, L.; Jafari, B.; Langer,
P. Tetrahedron 2017, 73, 3040.
of
our
knowledge,
the
first
tetrahydropyrazo-
(6) Wu, C. H.; Hung, M. S.; Song, J. S.; Yeh, T. K.; Chou, M. C.; Chu, C.
M.; Jan, J. J.; Hsieh, M. T.; Tseng, S. L.; Chang, C. P.; Hsieh, W. P.;
Lin, Y. C.; Yeh, Y. N.; Chung, W. L.; Kuo, C. W.; Lin, C. Y.; Shy, H.
S.; Chao, Y. S.; Shia, K. S. J. Med. Chem. 2009, 52, 4496.
(7) Dadiboyena, S.; Nefzi, A. Eur. J. Med. Chem. 2011, 46, 5258.
(8) Lahm, G. P.; Cordova, D.; Barry, J. D. Bioorg. Med. Chem. 2009, 17,
4127.
(9) (a) Elguero, J. In Comprehensive Heterocyclic Chemistry II, Vol. 3;
Shinkai, I., Ed.; Pergamon Press: Oxford, 1996, 1. (b) Eicher, T.;
Hauptmann, S. The Chemistry of Heterocycles, 2nd ed; Wiley-
VCH: Weinheim, 2003, 179. (c) Liu, J. J.; Zhao, M.-y.; Zhang, X.;
Zhao, X.; Zhu, H. L. Mini-Rev. Med. Chem. 2013, 13, 1957.
(10) Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Bioorg. Med. Chem.
Lett. 1996, 6, 1819.
lo[4',3':5,6]pyrano[3,4-c]quinolones through DKHDA reac-
tion of pyrazolones with N-acrylated anthranilic aldehydes.
The reaction proceeds with excellent regio- and stereose-
lectivity and in high yields. The reaction was carried out in
ethanol heated to reflux as a green and environmentally
friendly solvent. The Lewis acid used, ZnBr2, is inexpensive
and commercially available.
Acknowledgement
Financial support by the State of Mecklenburg-Vorpommern, by the
State of Iran, and by the DAAD is gratefully acknowledged.
(11) (a) Hwang, S. H.; Wagner, K. M.; Morisseau, C.; Liu, J. Y.; Dong,
H.; Wecksler, A. T.; Hammock, B. D. J. Med. Chem. 2011, 54, 3037.
(b) Dai, H. X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J. Q.
J. Am. Chem. Soc. 2011, 133, 7222.
(12) Donohue, S. R.; Halldin, C.; Pike, V. W. Bioorg. Med. Chem. 2006,
14, 3712.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
(13) Terçariol, P. R. G.; Godinho, A. F. Pestic. Biochem. Physiol. 2011,
99, 221.
(14) Gouda, M. A.; Berghot, M. A.; Shoeib, A. I.; Khalil, A. M. Eur.
J. Med. Chem. 2010, 45, 1843.
References and Notes
(1) (a) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in
Organic Synthesis; Wiley-VCH: Weinheim, 2006. (b) Tietze, L. F.;
Hippe, T.; Steinmetz, A. Synlett 1996, 1043. (c) Tietze, L. F.;
Modi, A. Med. Res. Rev. 2000, 20, 304. (d) Reddy, B. V. S.; Divya,
B.; Swain, M.; Rao, T. P.; Yadav, J. S.; Vardhan, M. V. P. S. V. Bioorg.
Med. Chem. Lett. 2012, 22, 1995. (e) Manian, R. D. R. S.;
Jayashankaran, J.; Raghunathan, R. Synlett 2007, 874. (f) Wu, M.;
Yang, J.; Luo, F.; Cheng, C.; Zhu, G. Org. Biomol. Chem. 2019, 17,
5684.
(2) (a) Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Gross, J. H.
Synlett 2009, 55. (b) Kiamehr, M.; Moghaddam, F. M. Tetrahe-
dron Lett. 2009, 50, 6723. (c) Parmar, N. J.; Parmar, B. D.;
Sutariya, T. R.; Kant, R.; Gupta, V. K. Tetrahedron Lett. 2014, 55,
6060. (d) Bakthadoss, M.; Kannan, D. RSC Adv. 2014, 4, 11723.
(e) Khoshkholgh, M. J.; Balalaie, S.; Gleiter, R.; Rominger, F. Tet-
rahedron 2008, 64, 10924. (f) Parmar, B. D.; Sutariya, T. R.;
Brahmbhatt, G. C.; Parmar, N. J.; Kant, R.; Gupta, V. K. J. Org.
Chem. 2016, 81, 4955. (g) Sutariya, T. R.; Labana, B. M.; Parmar,
B. D.; Parmar, N. J.; Kant, R.; Gupta, V. K. RSC Adv. 2015, 5,
(15) Chovatia, P. T.; Akabari, J. D.; Kachhadia, P. K.; Zalawadia, P. D.;
Joshi, H. S. J. Serb. Chem. Soc. 2007, 71, 713.
(16) Abadi, A. H.; Eissa, A. A. H.; Hassan, G. S. Chem. Pharm. Bull.
2003, 51, 838.
(17) (a) Abdel-Aziz, H. A.; El-Zahabi, H. S. A.; Dawood, K. M. Eur.
J. Med. Chem. 2010, 45, 2427. (b) Vujasinovic, I.; Paravic-Radi-
cevic, A.; Mlinaric-Majerski, K.; Brajsa, K.; Bertosa, B. Bioorg.
Med. Chem. 2012, 20, 2101.
(18) Kees, K. L.; Fitzgerald, J. J. Jr.; Steiner, K. E.; Mattes, J. F.; Mihan,
B.; Tosi, T.; Mondoro, D.; McCaleb, M. L. J. Med. Chem. 1996, 39,
3920.
(19) (a) Brogden, R. N. Drugs 1986, 32, 60. (b) Yang, C.; Li, J.; Zhou, R.;
Chen, X.; Gao, Y.; He, Z. Org. Biomol. Chem. 2015, 13, 4869.
(20) (a) Zhou, W.; Zhang, L.; Jiao, N. Tetrahedron 2009, 65, 1982.
(b) Ito, C.; Itoigawa, M.; Otsuka, T.; Tokuda, H.; Nishino, H.;
Furukawa, H. J. Nat. Prod. 2000, 63, 1344. (c) Seitz, W.; Geneste,
H.; Backfisch, G.; Delzer, J.; Graef, C.; Hornberger, W.; Kling, A.;
Subkowskic, T.; Norbert, Z. Bioorg. Med. Chem. 2008, 18, 527.
(d) Guthrie, D. B.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2009,
131, 15492. (e) Wang, H.; Sun, B.; Yang, J.; Wang, J.; Mao, P.;
Yang, L.; Mai, W. J. Chem. Res. 2014, 38, 542.
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–E