We thank the NIH and NSF for grants that supported this
work.
Notes and references
1
2
3
4
5
6
7
R. MacKinnon, S. L. Cohen, A. Kuo, A. Lee and B. T. Chait, Science,
998, 280, 106–109.
Y. Zhou, J. H. Morais-Cabral, A. Kaufman and R. MacKinnon, Nature,
001, 414, 43–48.
C. Sato, Y. Ueno, K. Asai, K. Takahashi, M. Sato, A. Engel and Y.
Fujiyoshi, Nature, 2001, 409, 1047–1051.
G. Chang, R. H. Spencer, A. T. Lee, M. T. Barclay and D. C. Rees,
Science, 1998, 282, 2220–2226.
M. Yasui, A. Hazama, T.-H. Kwon, S. Nielsen, W. B. Guggino and P.
Agre, Nature, 1999, 402, 184–187.
1
2
D. C. Rees, G. Chang and R. H. Spencer, J. Biol. Chem., 2000, 275,
7
13–716.
(a) X-ray structure of a ClC chloride channel at 3.0 Å reveals the
molecular basis of anion selectivity. R. Dutzler, E. B. Campbell, M.
Cadene, B. T. Chait and R. MacKinnon, Nature, 2002, 415, 287–294;
(
b) C. Miller, Curr. Opinion Chem. Biol., 2000, 4, 148–151.
D. P. Tieleman, M. S. P. Sansom and H. J. C. Berendsen, Biophys. J.,
999, 76, 40–49.
8
9
1
Y.-H. Lam, S. R. Wassall, C. J. Morton, R. Smith and F. Separovic,
Biophys. J., 2001, 81, 2752–2761.
Fig. 1 (A) Chloride release by 147 mM 1 (upper trace) and 154 mM 2. (B)
Chloride release by 147 mM 1 (upper trace) and 154 mM 3.
1
0 O. S. Andersen, H. J. Apell, E. Bamberg, D. D. Busath, R. E. Koeppe,
F. J. Sigworth, G. Szabo, D. W. Urry and A. Woolley, Nature Struct.
Biol., 1999, 6, 609.
the twin hydrophobic tails, in the absence of the peptide, are not
sufficient to form a channel. Further, the difference in activity
1
1 (a) G. W. Gokel and O. Murillo, Acc. Chem. Res., 1996, 29, 425–432;
(b) G. W. Gokel and A. Mukhopadhyay, Chem. Soc. Rev., 2001, 30,
between 1 and 2 suggests a critical function for the kink or
2
74–286.
hinge-bend’ provided by proline.8
,26
‘
12 A. V. Starostin, R. Butan, V. Borisenko, D. A. James, H. Wenschuh, M.
S. P. Sansom and G. A. Woolley, Biochemistry, 1999, 38,
6144–6150.
3 (a) J. M. Tomich, D. Wallace, K. Henderson, K. E. Mitchell, G. Radke,
R. Brandt, C. A. Ambler, A. J. Scott, J. Grantham, L. Sullivan and T.
Iwamoto, Biophys. J., 1998, 74(1), 256–267; (b) J. R. Broughman, K. E.
Mitchell, R. L. Sedlacek, T. Iwamoto, J. M. Tomich and B. D. Schultz,
Am. J. Physiol., 2001, 280, 451–458; (c) D. P. Wallace, J. M. Tomich,
J. W. Eppler, T. Iwamoto, J. J. Grantham and L. P. Sullivan, Biochim.
Biophys. Acta, 2000, 1464(1), 69–82.
14 G. W. Gokel, Chem. Commun., 2000, 1–9.
15 S. S. Smith, E. D. Steinle, M. E. Meyerhoff and D. C. Dawson, J. Gen.
Physiol., 1999, 114, 799–817.
16 (a) H. Ihara, Y. Hashiguchi and T. Kunitake, Chem. Lett., 1983,
733–736; (b) H. Ebato, J. N. Herron, W. Mœller, Y. Okahata, H.
Ringsdorf and P. Suci, Angew. Chem., Int. Ed. Engl., 1992, 31,
We have previously shown that the pore of 1 is at least
2
+ 27
1
0-fold selective for Cl over K : KCl transport is therefore
1
not possible. For rapid, complete chloride release to occur, the
system must remain electroneutral. The external anion must
2
enter the vesicle as chloride exits. Non-interfering NO
3
or
22
SO
4
was employed in the extravesicular medium to deter-
27
mine the anion selectivity of 1. In Fig. 2 and in previous work,
2
we have shown that NO
3
effectively permeates the pore of 1,
permitting rapid chloride release.
22
2
Fig. 2 shows that SO
4
does not support Cl release as well
2
3
. Chloride release must be compensated by
as does NO
another anion and the vesicles are less permeable to SO
22
4
than
2
3
. Addition of valinomycin increased the release of
to NO
+
chloride (see Fig. 2) by allowing K to exit the liposome in
1
087–1090; (c) B. D. Gildea, S. Casey, J. MacNeill, H. Perry-OAKeefe,
2
concert with Cl release mediated by 1. Taken together, these
D. Soerensen and J. M. Coull, Tetrahedron Lett., 1998, 7255–7258.
7 D. R. Halm and R. A. Frizzell, Intestinal Chloride Secretion, New York:
Raven. 1990, pp. 47–58.
2
studies indicate a relative ion permeability order of Cl
~
1
2
22
+
NO
3
> SO
4
ì K for 1. This sequence of relative anion
permeabilities indicates that extravesicular monovalent anions
18 (a) C. Fahlke, H. T. Yu, C. L. Beck, T. H. Rhodes and A. L. George Jr.,
Nature (London), 1997, 390, 529–532; (b) C. Fahlke, R. R. Desai, N.
Gillani and A. L. George, J. Biol. Chem., 2001, 276, 1759–1765.
19 P. J. Corringer, S. Bertrand, J. Galzi, A. Devillers-Thiery, J.-P.
Changeux and D. Bertrandt, Neuron, 1999, 22, 831–843.
22
2
are more effective than divalent SO
4
in supporting Cl
release. We draw the hopeful inference from this that when 1 is
2
applied to living cells, it will increase permeability to Cl , the
major physiologic anion, more effectively than it will affect
phosphate permeability. This selectivity is critical for use of 1 in
vivo, which is a long-term goal of this effort.
2
2
2
0 N. Gibbs, R. B. Sessions, P. B. Williams and C. E. Dempsey, Biophys.
J., 1997, 72, 2490–2495.
1 C. J. Brandl and C. M. Deber, Proc. Natl. Acad. Sci. USA, 1986, 83,
9
17–921.
2 (a) Y. Ido, A. Vindigni, K. Chang, L. Stramm, R. Chance, W. F. Heath,
R. D. DiMarchi, E. DiCera and J. R. Williamson, Science, 1997, 277,
5
63–566; (b) H. M. Henriksson, J. Shafqat, E. Liepnish, M. Tally, J.
Wahren, H. Jörnvall and J. Johansson, Cell Mol. Life Sci., 2000, 57,
37–342.
3
2
3 1: mp 116–118 °C. 2: mp 164–165 °C. Additional details may be found
in the ESI†.
2
2
4 Fisher Scientific, St. Louis, MO.
5 (a) M. Saito, S. J. Korsmeyer and P. H. Schlesinger, Nature Cell
Biology, 2000, 553–555; (b) P. Schlesinger, A. Gross, X. Xin, K.
Yamamoto, M. Saito, G. Waksman and S. J. Korsmeyer, Proc. Natl.
Acad. Sci. U.S.A., 1997, 94, 11357–11362.
2
6 L. Yang, T. A. Harroun, T. M. Weiss, L. Ding and H. W. Huang,
Biophys. J., 2001, 81, 1475–1485.
2
7 P. H. Schlesinger, R. Ferdani, J. Liu, J. Pajewska, R. Pajewski, M. Saito,
H. Shabany and G. W. Gokel, J. Am. Chem. Soc., 2002, 124,
1848–1849.
Fig. 2 Fraction of Cl2 released with respect to time by 1 in the presence of
2
22
NO
3
, valinomycin, and SO
4
.
CHEM. COMMUN., 2002, 840–841
841