The Journal of Organic Chemistry
Article
(9) The D2O/CD3CN (4:1) mixture was employed in order to
ensure the solubilization of all the reactants, as it was necessary to do
the kinetic study in a homogeneous medium.
ASSOCIATED CONTENT
■
S
* Supporting Information
1H, 13C, and 2D NMR spectra for the inclusion complex 5⊂3·
6NO3, references, and results of representative kinetic experi-
ments. This material is available free of charge via the Internet
(10) The rate-limiting step of an SNAr is determined by the relative
rates of the expulsion of the nucleophile and the leaving group from
the Meisenheimer intermediate. If one group leaves faster than the
other, the step involving the poorer leaving group (in this case, the
azide ion) is rate-determining. This means that the reverse direction of
the equilibrium for the formation of the reaction intermediate must be
slower than that of its irreversible collapse, which confirms that kuncat
and kcat can be identified as the rate constants in the forward direction
in the equilibria for the formation of T− (k1 and k2, respectively).
(11) This sequence of reactivity is also known as the “element effect”.
See: Bunnett, J. F.; Garbisch, E. W., Jr.; Pruitt, K. M. J. Am. Chem. Soc.
1957, 79, 385.
AUTHOR INFORMATION
■
Corresponding Authors
Tel: +34 981 167 000.
Notes
(12) (a) Miller, J.; Parker, A. J. J. Am. Chem. Soc. 1961, 83, 117.
(b) Alexander, R.; Ko, E. C. F.; Parker, A. J.; Broston, T. J. J. Am.
Chem. Soc. 1968, 90, 5049.
The authors declare no competing financial interest.
(13) For instance, Shinkai et al. reported this kind of “remote
control” over the reactivity of a flavin analogue by means of metal
complexation to a distal crown ether attached to the coenzyme core.
See: Shinkai, S.; Kameoka, K.; Ueda, K.; Manabe, O. J. Am. Chem. Soc.
1987, 109, 923.
ACKNOWLEDGMENTS
■
This research was supported by Ministerio de Ciencia e
Innovacion
thanks Ministerio de Ciencia e Innovacion
́
and FEDER (CTQ2010-16484/BQU). E.M.L.-V.
(FPI Program).
́
(14) This inhibitory effect could not be studied with ligand 4·NO3
because no complexation between 4·NO3 and pyrene occurs, and
consequently, no solubilization of pyrene was detected.
(15) Pliego, J. R., Jr.; Pilo-Veloso, D. Phys. Chem. Chem. Phys. 2008,
10, 1118.
(16) Budyka, M. F.; Biktimrova, N. V.; Gavrishova, T. N.; Laukhina,
O. D.; Zemtsov, D. B. J. Photochem. Photobiol., A 2005, 173, 70.
(17) Bailey, A. S.; Case, J. R. Tetrahedron 1958, 3, 113.
REFERENCES
■
(1) (a) Marchetti, L.; Levine, M. ACS Catal. 2011, 1, 1090.
(b) Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.;
Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005,
105, 1445.
(2) (a) Debata, N. B.; Tripathy, D.; Chand, D. K. Coord. Chem. Rev.
2012, 256, 1831. (b) Beves, J. E.; Blight, B. A.; Campbell, C. J.; Leigh,
D. A.; McBurne, R. T. Angew. Chem., Int. Ed. 2011, 50, 9260.
(c) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011,
̀
111, 6810. (d) Safont-Sempere, M. M.; Fernandez, G.; Wurthner, F.
́
̈
Chem. Rev. 2011, 111, 5784. (e) Kumar, A.; Sun, S.-S.; Lees, A. J.
Coord. Chem. Rev. 2008, 252, 922.
(3) (a) Lin, W. In Supramolecular Catalysis; van Leeuwen, P. W. N.
M., Ed.; Wiley-VCH: Weinheim, Germany, 2008; p 93. (b) Yoshizawa,
M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418.
(c) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res.
2009, 42, 1650. (d) Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem.
Soc. Rev. 2008, 37, 247.
(4) (a) Kang, J.; Rebek, J., Jr. Nature 1997, 385, 50. (b) Iwasawa, T.;
Hooley, R. J.; Rebek, J., Jr. Science 2007, 317, 493. (c) Butterfield, S.
M.; Rebek, J., Jr. Chem. Commun. 2007, 1605.
(5) (a) Merlau, M. L.; Mejia, M. d. P.; Nguyen, S. T.; Hupp, J. T.
Angew. Chem., Int. Ed. 2001, 40, 4239. (b) Yoon, H. J.; Mirkin, C. A. J.
Am. Chem. Soc. 2008, 130, 11590. (c) Yoon, H. J.; Kuwabara, J.; Kim,
J.-H.; Mirkin, C. A. Science 2010, 330, 66. (d) Noh, T. H.; Heo, E.;
Park, K. H.; Jung, O. S. J. Am. Chem. Soc. 2011, 133, 1236.
(e) Hastings, C. J.; Backlund, M. P.; Bergman, R. G.; Raymond, K. N.
Angew. Chem., Int. Ed. 2011, 50, 10570. (f) Amouri, H.; Desmarets, C.;
Moussa, J. Chem. Rev. 2012, 112, 2015. (g) He, Q.-T.; Li, X.-P.; Chen,
L.-F.; Zhang, L.; Wang, W.; Su, C.-Y. ACS Catal. 2013, 3, 1.
́
(6) (a) Lopez-Vidal, E. M.; Blanco, V.; García, M. D.; Peinador, C.;
Quintela, J. M. Org. Lett. 2012, 14, 580. (b) Blanco, V.; García, M. D.;
Platas-Iglesias, C.; Peinador, C.; Quintela, J. M. Chem. Commun. 2010,
46, 6672. (c) Peinador, C.; Blanco, V.; Quintela, J. M. J. Am. Chem. Soc.
2009, 131, 920. (d) Blanco, V.; Gutierrez, A.; Platas-Iglesias, C.;
Peinador, C.; Quintela, J. M. J. Org. Chem. 2009, 74, 6577.
(e) Peinador, C.; Pía, E.; Blanco, V.; García, M. D.; Quintela, J. M.
Org. Lett. 2010, 12, 1380. (f) Peinador, C.; Blanco, V.; García, M. D.;
Quintela, J. M. In Molecular Self-Assembly: Advances and Applications;
Li, A. D. Q., Ed.; Pan Stanford Publishing: Singapore, 2012; p 351.
(7) D’Anna, F.; Marullo, S.; Noto, R. J. Org. Chem. 2008, 73, 6224.
́
(8) (a) Blanco, V.; García, M. D.; Terenzi, A.; Pía, E.; Fernandez-
Mato, A.; Peinador, C.; Quintela, J. M. Chem.Eur. J. 2010, 16,
12373. (b) Alvarino, C.; Pía, E.; García, M. D.; Blanco, V.; Fernan
A.; Peinador, C.; Quintela, J. M. Chem.Eur. J. 2013, 19, 15329.
́
dez,
̃
1270
dx.doi.org/10.1021/jo402689p | J. Org. Chem. 2014, 79, 1265−1270