10.1002/anie.201710530
Angewandte Chemie International Edition
COMMUNICATION
radiation was performed at the Pohang Accelerator Laboratory
(Beamline 2D and 6D). We thank Gregory B. Boursalian and
Dmitry V. Yandulov for helpful discussions.
Keywords: carbenes • iminoxyl radicals • nucleophilic addition •
radical cations • radicals
Figure 4. (a) Molecular structure of 6 and (b) 7 from X-ray crystallography. The
thermal ellipsoids are set at a 50% probability level. Triflate anions, solvent
molecules (toluene), and minor disorders were omitted for clarity. Bond lengths
and bond angles are described in the Supplementary Information.
[1]
[2]
a) D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem. Rev. 2000,
100, 39-92; b) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius,
Nature 2014, 510, 485-496.
a) A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, J. Am. Chem.
Soc. 1988, 110, 6463-6466; b) A. J. Arduengo, R. L. Harlow, M. Kline, J.
Am. Chem. Soc. 1991, 113, 361-363; c) J. Huang, S. P. Nolan, J. Am.
Chem. Soc. 1999, 121, 9889-9890; d) V. Lavallo, Y. Canac, C. Prasang,
B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 5705-5709;
e) T. W. Hudnall, C. W. Bielawski, J. Am. Chem. Soc. 2009, 131, 16039-
16041.
It is interesting that the structural parameters of 6 and 7 are
distinctly different. The C1–N3 bond length of 6 (1.412(3) Å) is
longer than that of 7 (1.348(4) Å), while the N3–O1 bond length
of 6 (1.228(3) Å) is much shorter than that of 7 (1.405(4) Å). The
most significant structural difference is that the (imidazole ring)–
N–O fragment is almost planar in 6 (N2–C1–N3–O1 torsion angle:
1.8(3)), but is twisted in 7 (N2–C1–N3–O1 torsion angle: 35.8(4)).
These structural parameters were well reproduced in the DFT
calculations at B3LYP/6-31G(d,p) level of theory.
For the disproportionation of 1 to 6 and 7, two different
mechanisms were proposed. One possible mechanism starts with
the protonation of 1 to generate the radical cation 5 as a transient
intermediate, followed by disproportionation (i.e. hydrogen atom
transfer) to generate 6 and 7. Another plausible mechanism is the
single electron transfer between the intermediate 5 and remaining
1 to generate 6 with oxime 8.[10c] It is notable that 1 undergoes
reversible one-electron oxidation (E1/2 = 0.327 V vs. saturated
Ag/AgCl),[7] and 5 may act as a one-electron oxidant in the
reaction to generate 6. In comparison with 2a (E1/2 = 0.406 V) or
3b (E1/2 = 0.563 V), 5 is expected to be a stronger oxidant, due to
the absence of the electron-donating silyl or alkyl groups.
[3]
a) D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389-399;
b) C. D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2013, 4, 3020-
3030; c) H. Song, Y. Kim, J. Park, K. Kim, E. Lee, Synlett 2016, 27, 477-
485; d) O. Back, B. Donnadieu, M. von Hopffgarten, S. Klein, R. Tonner,
G. Frenking, G. Bertrand, Chem. Sci. 2011, 2, 858.
[4]
[5]
a) M. Schäfer, M. Drayß, A. Springer, P. Zacharias, K. Meerholz, Eur. J.
Org. Chem. 2007, 2007, 5162-5174; b) M. Schmittel, A. Burghart, Angew.
Chem. Int. Ed. 1997, 36, 2550-2589; c) T. D. Beeson, A. Mastracchio, J.
B. Hong, K. Ashton, D. W. Macmillan, Science 2007, 316, 582-585.
a) O. Back, M. A. Celik, G. Frenking, M. Melaimi, B. Donnadieu, G.
Bertrand, J. Am. Chem. Soc. 2010, 132, 10262-10263; b) O. Back, B.
Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Nat. Chem.
2010, 2, 369-373; c) R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem.
Int. Ed. 2010, 49, 5930-5933; d) R. Kinjo, B. Donnadieu, M. A. Celik, G.
Frenking, G. Bertrand, Science 2011, 333, 610-613; e) H. Tanaka, M.
Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2012, 134, 5540-5543; f) D.
Martin, C. E. Moore, A. L. Rheingold, G. Bertrand, Angew. Chem. Int. Ed.
2013, 52, 7014-7017; g) P. Bissinger, H. Braunschweig, A. Damme, C.
Horl, I. Krummenacher, T. Kupfer, Angew. Chem. Int. Ed. 2015, 54, 359-
362.
In summary, we have presented the synthesis of silyl and alkyl
oxime ether radical cations 2 and 3, from the reaction of the NHC-
stabilized nitric oxide radical 1 with silicon or carbon electrophiles,
respectively. Single crystal X-ray and computational studies
suggest that the spin density of compounds 2 and 3 are
delocalized over the molecular plane. The well-defined 1e redox
behavior suggests the potential application of the radical cations
as a tunable organic oxidant. On the other hand, the reaction of 1
toward a simple proton yielded a 1:1 mixture of NHC-bound
nitrosyl (6) and hydroxylamine (7) derivatives. This work is the first
demonstration of the nucleophilicity of iminoxyl radicals, which
extends our understanding of the reactive radical species, and
was enabled by the aid of the novel properties of N-heterocyclic
carbenes. The reactivity of the iminoxyl radicals toward other
interesting electrophiles is now under active investigation.
[6]
a) J. L. Hofstra, B. R. Grassbaugh, Q. M. Tran, N. R. Armada, H. J. P. de
Lijser, J. Org. Chem. 2015, 80, 256-265; b) H. J. P. de Lijser, C. K. Tsai,
J. Org. Chem. 2004, 69, 3057-3067; c) H. J. P. de Lijser, F. H. Fardoun,
J. R. Sawyer, M. Quant, Org. Lett. 2002, 4, 2325-2328.
[7]
[8]
J. Park, H. Song, Y. Kim, B. Eun, Y. Kim, D. Y. Bae, S. Park, Y. M. Rhee,
W. J. Kim, K. Kim, E. Lee, J. Am. Chem. Soc. 2015, 137, 4642-4645.
a) A. G. Tskhovrebov, E. Solari, M. D. Wodrich, R. Scopelliti, K. Severin,
Angew. Chem. Int. Ed. 2012, 51, 232-234; b) A. G. Tskhovrebov, B.
Vuichoud, E. Solari, R. Scopelliti, K. Severin, J. Am. Chem. Soc. 2013,
135, 9486-9492; c) A. G. Tskhovrebov, L. C. Naested, E. Solari, R.
Scopelliti, K. Severin, Angew. Chem. Int. Ed. 2015, 54, 1289-1292.
a) J. J. Scepaniak, A. M. Wright, R. A. Lewis, G. Wu, T. W. Hayton, J.
Am. Chem. Soc. 2012, 134, 19350-19353; b) X. Tao, G. Kehr, X. Wang,
C. G. Daniliuc, S. Grimme, G. Erker, Chem. Eur. J. 2016, 22, 9504-9507;
c) W.-w. Huang, H. Henry-Riyad, T. T. Tidwell, J. Am. Chem. Soc. 1999,
121, 3939-3943.
[9]
[10] a) V. A. Golubev, R. I. Zhdanov, V. M. Gida, E. G. Rozantsev, Russ.
Chem. Bull. 1971, 20, 768-770; b) V. A. Golubev, V. D. Sen, I. V. Kulyk,
A. L. Aleksandrov, Russ. Chem. Bull. 1975, 24, 2119-2126; c) V. D. Sen,
V. A. Golubev, J. Phys. Org. Chem. 2009, 22, 138-143.
Acknowledgements
This work was supported by the Institute for Basic Science (IBS)
[IBS-R007-D1]. X-ray diffraction experiment with synchrotron
This article is protected by copyright. All rights reserved.