Acid-Promoted Hydride Transfer from NADH Analogues
A R T I C L E S
oxidation of various substrates, including alkane hydroxylation,
olefin epoxidation, alcohol oxidation, N-dealkylation, and the
oxidation of sulfides and PPh3.5-8 More recently, we have
reported the electron-transfer properties (i.e., the reorganization
energies and the one-electron reduction potentials) of non-heme
oxoiron(IV) complexes.9 However, hydride-transfer reactions
of non-heme oxoiron(IV) complexes have never been explored
previously.10
Among hydride donors, dihydronicotinamide adenine di-
nucleotide (NADH) and analogues have attracted particular
interest, because NADH is the most important source of hydride
ion (two electrons and a proton) in biological redox reactions.11-13
There has been extensive discussion on the mechanism of
hydride-transfer reactions of NADH and analogues, such as
concerted hydride transfer vs sequential electron-proton-electron
(equivalent to a hydride ion) transfer.14-24 In contrast to the
one-step hydride-transfer pathway that proceeds without an
intermediate, the electron-transfer pathway would produce
radical cations of NADH and its analogues as reaction
intermediates.25,26 Such an electron-transfer pathway can be
accelerated by an acid due to the protonation of the one-electron-
reduced species.27-31 Indeed, we have recently reported the
successful detection of a radical cation of an NADH analogue,
9,10-dihydro-10-methylacridine (AcrH2), in the acid-promoted
hydride transfer from AcrH2 to 1-(p-tolylsulfinyl)-2,5-benzo-
quinone.32 However, the hydride-transfer mechanism has yet
to be clarified in the case of non-heme oxoiron(IV) complexes.
Also, neither the effect of acid on hydride-transfer reactions
from NADH analogues to non-heme oxoiron(IV) complexes nor
the detection of radical cations of NADH analogues in the
hydride-transfer reactions has so far been reported.
We report herein the first example of hydride transfer from
a series of NADH analogues, 10-methyl-9,10-dihydroacridine
(AcrH2) and its 9-subsituted derivatives (AcrHR: R ) H, Ph,
Me, and Et), 1-benzyl-1,4-dihydronicotinamide (BNAH), and
their deuterated compounds, to mononuclear non-heme oxo-
iron(IV) complexes, [(L)FeIV(O)]2+ (L ) N4Py, N,N-bis(2-
pyridylmethyl)-N-bis(2-pyridyl)methylamine; Bn-TPEN, N-benzyl-
N,N′,N′-tris(2-pyridylmethyl)ethane-1,2-diamine; TMC, 1,4,8,11-
tetramethyl-1,4,8,11-tetraazacyclotetradecane) (see Chart 1). The
mechanism of hydride transfer from NADH analogues to non-
heme oxoiron(IV) complexes is clarified in relation to hydride
transfer from the same series of NADH analogues to a
p-benzoquinone derivative.22 The promoting effect of perchloric
acid on hydride-transfer reactions from NADH analogues to
[(L)FeIV(O)]2+ is extensively compared with the hydride-transfer
reactions without acids. In addition, we have succeeded in
detecting radical cations of NADH analogues in acid-promoted
hydride-transfer reactions from NADH analogues to [(L)FeIV-
(O)]2+. This result provides direct evidence that hydride transfer
(4) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski,
M. R.; Stubna, A.; Mu¨nck, E.; Nam, W.; Que, L., Jr. Science 2003,
299, 1037–1039.
(5) (a) Nam, W. Acc. Chem. Res. 2007, 40, 522–531. (b) Que, L., Jr.
Acc. Chem. Res. 2007, 40, 493–500.
(6) (a) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.;
Stubna, A.; Kim, J.; Mu¨nck, E.; Nam, W.; Que, L., Jr. J. Am. Chem.
Soc. 2004, 126, 472–473. (b) Oh, N. Y.; Suh, Y.; Park, M. J.; Seo,
M. S.; Kim, J.; Nam, W. Angew. Chem., Int. Ed. 2005, 44, 4235–
4239. (c) Kim, S. O.; Sastri, C. V.; Seo, M. S.; Kim, J.; Nam, W.
J. Am. Chem. Soc. 2005, 127, 4178–4179. (d) Bukowski, M. R.;
Koehntop, K. D.; Stubna, A.; Bominaar, E. L.; Halfen, J. A.; Mu¨nck,
E.; Nam, W.; Que, L., Jr. Science 2005, 310, 1000–1002. (e) Park,
M. J.; Lee, J.; Suh, Y.; Kim, J.; Nam, W. J. Am. Chem. Soc. 2006,
128, 2630–2634. (f) Sastri, C. V.; Oh, K.; Lee, Y. J.; Seo, M. S.;
Shin, W.; Nam, W. Angew. Chem., Int. Ed. 2006, 45, 3992–3995. (g)
Nehru, K.; Seo, M. S.; Kim, J.; Nam, W. Inorg. Chem. 2007, 46,
293–298. (h) Sastri, C. V.; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson,
T. A.; Ray, K.; Hirao, H.; Shin, W.; Halfen, J. A.; Kim, J.; Que, L.,
Jr.; Shaik, S.; Nam, W. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 19181–
19186.
(18) (a) Zhu, X.-Q.; Yang, Y.; Zhang, M.; Cheng, J.-P. J. Am. Chem. Soc.
2003, 125, 15298–15299. (b) Zhu, X.-Q.; Cao, L.; Liu, Y.; Yang, Y.;
Lu, J.-Y.; Wang, J.-S.; Cheng, J.-P. Chem.-Eur. J. 2003, 9, 3937–
3945. (c) Zhu, X.-Q.; Zhang, J.-Y.; Cheng, J.-P. J. Org. Chem. 2006,
71, 7007–7015.
(7) (a) Martinho, M.; Banse, F.; Bartoli, J.-F.; Mattioli, T. A.; Battioni,
P.; Horner, O.; Bourcier, S.; Girerd, J.-J. Inorg. Chem. 2005, 44, 9592–
9596. (b) Balland, V.; Charlot, M.-F.; Banse, F.; Girerd, J.-J.; Mattioli,
T. A.; Bill, E.; Bartoli, J.-F.; Battioni, P.; Mansuy, D. Eur. J. Inorg.
Chem. 2004, n/a, 301–308.
(19) Afanasyeva, M. S.; Taraban, M. B.; Purtov, P. A.; Leshina, T. V.;
Grissom, C. B. J. Am. Chem. Soc. 2006, 128, 8651–8658.
(20) Yuasa, J.; Yamada, S.; Fukuzumi, S. J. Am. Chem. Soc. 2006, 128,
14938–14948.
(8) (a) Bautz, J.; Comba, P.; Lopez de Laorden, C. L.; Menzel, M.;
Rajaraman, G. Angew. Chem., Int. Ed. 2007, 46, 8067–8070. (b)
Anastasi, A. E.; Comba, P.; McGrady, J.; Lienke, A.; Rohwer, H.
Inorg. Chem. 2007, 46, 6420–6426. (c) Bautz, J.; Bukowski, M. R.;
Kerscher, M.; Stubna, A.; Comba, P.; Lienke, A.; Mu¨nck, E.; Que,
L., Jr. Angew. Chem., Int. Ed. 2006, 45, 5681–5684.
(21) (a) Fukuzumi, S.; Ohkubo, K.; Okamoto, T. J. Am. Chem. Soc. 2002,
124, 14147–14155. (b) Fukuzumi, S.; Fujii, Y.; Suenobu, T. J. Am.
Chem. Soc. 2001, 123, 10191–10199. (c) Fukuzumi, S.; Yuasa, J.;
Suenobu, T. J. Am. Chem. Soc. 2002, 124, 12566–12573.
(22) Fukuzumi, S.; Ohkubo, K.; Tokuda, Y.; Suenobu, T. J. Am. Chem.
Soc. 2000, 122, 4286–4294.
(9) Lee, Y.-M.; Kotani, H.; Suenobu, T.; Nam, W.; Fukuzumi, S. J. Am.
Chem. Soc. 2008, 130, 434–435.
(23) Lee, I.-S. H.; Jeoung, E. H.; Kreevoy, M. M. J. Am. Chem. Soc. 1997,
119, 2722–2728.
(10) Electron-transfer, hydride-transfer, and hydrogen-atom transfer mech-
anisms have been discussed in hydrocarbon oxidation by bis-µ-oxo
manganese dimers: Larsen, A. S.; Wang, K.; Lockwood, M. A.; Rice,
G. L.; Won, T.-J.; Lovell, S.; Sadı´lek, M.; Turecˇek, F.; Mayer, J. M.
J. Am. Chem. Soc. 2002, 124, 10112–10123.
(24) (a) Carlson, B. W.; Miller, L. L. J. Am. Chem. Soc. 1985, 107, 479–
485. (b) Miller, L. L.; Valentine, J. R. J. Am. Chem. Soc. 1988, 110,
3982–3989.
(25) Fukuzumi, S.; Tokuda, Y.; Kitano, T.; Okamoto, T.; Otera, J. J. Am.
Chem. Soc. 1993, 115, 8960–8968.
(11) Stout, D. M.; Meyers, A. I. Chem. ReV. 1982, 82, 223–243.
(12) Gebicki, J.; Marcinek, A.; Zielonka, J. Acc. Chem. Res. 2004, 37, 379–
386.
(26) (a) Fukuzumi, S.; Inada, O.; Suenobu, T. J. Am. Chem. Soc. 2002,
124, 14538–14539. (b) Fukuzumi, S.; Inada, O.; Suenobu, T. J. Am.
Chem. Soc. 2003, 125, 4808–4816.
(13) (a) Fukuzumi, S. In AdVances in Electron Transfer Chemistry;
Mariano, P. S., Ed.; JAI press; Greenwich, CT, 1992; pp 67-175. (b)
Fukuzumi, S.; Tanaka, T. In Photoinduced Electron Transfer; Fox,
M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part C, Chap.
10, pp 578-635.
(27) (a) Fukuzumi, S. In Electron Transfer in Chemistry; Balzani, V., Ed.;
Wiley-VCH: Weinheim, 2001; Vol. 4, pp 3-67. (b) Fukuzumi, S.
Org. Biomol. Chem. 2003, 1, 609–620.
(28) (a) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. Chem. Soc., Perkin
Trans. 2 1989, 1037–1045. (b) Fukuzumi, S.; Mochizuki, S.; Tanaka,
T. J. Am. Chem. Soc. 1989, 111, 1497–1499.
(14) (a) He, G.-X.; Blasko, A.; Bruice, T. C. Bioorg. Chem. 1993, 21, 423–
430. (b) Ohno, A. J. Phys. Org. Chem. 1995, 8, 567–576.
(15) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem.
Soc. 1987, 109, 305–316.
(29) Fukuzumi, S.; Tokuda, Y. J. Phys. Chem. 1993, 97, 3737–3741.
(30) (a) Coleman, C. A.; Rose, J. G.; Murray, C. J. J. Am. Chem. Soc.
1992, 114, 9755–9762. (b) Murray, C. J.; Webb, T. J. Am. Chem.
Soc. 1991, 113, 7426–7427.
(16) (a) Fukuzumi, S.; Nishizawa, N.; Tanaka, T. J. Org. Chem. 1984, 49,
3571–3578. (b) Fukuzumi, S.; Nishizawa, N.; Tanaka, T. J. Chem.
Soc., Perkin Trans. 2 1985, 49, 371–378.
(31) Yuasa, J.; Yamada, S.; Fukuzumi, S. J. Am. Chem. Soc. 2008, 130,
5808–5820.
(17) (a) Pestovsky, O.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1998,
120, 13422–13428. (b) Pestovsky, O.; Bakac, A.; Espenson, J. H.
Inorg. Chem. 1998, 37, 1616–1622.
(32) Yuasa, J.; Yamada, S.; Fukuzumi, S. Angew. Chem., Int. Ed. 2008,
47, 1068–1071.
9
J. AM. CHEM. SOC. VOL. 130, NO. 45, 2008 15135